Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi số cần tìm có dạng
Chọn a : có 2 cách
Chọn b, c : có cách
Vậy có số.
Lời giải:
Gọi số cần tìm có dạng $\overline{abc}$. Xét các TH sau:
TH1: $c=0$
$a$ có 7 cách chọn, từ $1,2,4,5,7,8,9$
$b$ có 6 cách chọn
$\Rightarrow$ có $7.6=42$ cách chọn số
TH2: $c\neq 0$
$c$ có 3 cách chọn $(2,4,8)$
$a$ có $6$ cách chọn (bỏ số 0)
$b$ có $6$ cách chọn
$\Rightarrow$ có $3.6.6=108$ cách chọn số
Từ 2 TH trên suy ra có $108+42=150$ cách chọn số.
Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\), \(a_i\ne a_j\)
a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn
Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)
Có tất cả 9*\(A_9^3\)số cần lập
b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)
+ Với a4=0 có 1 cách chọn
Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)
Có 1*\(A_9^3\)số cần lập.
+Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn
Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)
Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập
có 4*8*\(A_8^2\)
vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).
a)\(A_9^4\)
b)Gọi số cần lập là \(\overline{a_1a_2a_3a_4}=m\)\(\in A\),\(a_i\ne a_j\)
Số cần lập là số chẵn nên a4\(\in\left\{2,4,6,8\right\}\) \(\Rightarrow\) có 4 cách chọn a4
Chọn 3 trong 8 chữ số của A\\(\left\{a_1\right\}\)\(\Rightarrow\)có \(A_8^3\)
có tất cả \(4\cdot A_8^3\)số cần lập
Từ các chữ số {0, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau ?
Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)
TH1: \(d=0\)
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(3.4.5=60\) cách lập.
TH2: \(d\ne0\)
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.
Vậy có \(96+60=156\) cách lập.
*) Chữ số hàng đơn vị có thể chọn: 5 lần (Do số chẵn mà)
*) Chữ số thứ 2 có thể chọn là: 9-1=8 ( lần)
*) Chứ số thứ 3 là: 8-1=7 ( lần)
.....
*) Chữ số thứ 7 là : 4-1=3 (lần)
=> Có số số là: 5.8.7.6.5.4.3=100800(số)
P/s: Không biết đúng không
Gọi \(A_0\), \(A_2\), \(A_4\), \(A_6\), \(A_8\) là tập hợp các số tự nhiên mỗi số gồm 7 chữ số khác nhau chọn trong 9 số trên và số tận cùng tương ứng là 0,2,4,6,8.
Gọi A là tập hợp các số cần tìm. Theo quy tắc cộng ta có
\(\left|A\right|\) = \(\left|A_0\right|\) + 4\(\left|A_2\right|\) (1)
(vì \(\left|A_2\right|\) = \(\left|A_4\right|\) = \(\left|A_6\right|\) = \(\left|A_8\right|\) do vai trò tương tự của \(A_2\), \(A_4\), \(A_6\), \(A_8\))
Dễ thấy \(\left|A_0\right|\) = \(A_8^6\) = 20160
Mỗi phần tử của tập hợp \(A_2\) có dạng \(\overline{a_1a_2a_3a_4a_5a_62_{ }}\) trong đó \(a_1\) \(\ne\) 0
Để chọn \(a_1\) có 7 cách (trừ 0 và 2)
chọn \(a_2\) có 7 cách
chọn \(a_3\) có 6 cách
chọn \(a_4\) có 5 cách
chọn \(a_5\) có 4 cách
chọn \(a_6\) có 3 cách
Theo quy tắc nhân \(\left|A_2\right|\) = 7.7.6.5.4.3 = 17640
Vậy thay vào (1), ta có \(\left|A\right|\) = 90750
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
Gọi abc là stn có ba chữ số khác nhau cần tìm
TH1: c = {0} -> 1cc TH2: c = {2;4;6} -> 3cc
a \ {c} -> 6cc a \ {0;c) -> 5cc
b \ {a;c} -> 5cc b \ {a;c} -> 5cc
<=>(6*5)+(3*5*5)=105 số
Gọi số tự nhiên chẵn có 3 chữ số khác nhau là \(\overline{abc}\)
Số tự nhiên chẵn thì có 2 trường hợp :
\(TH_1:c=0\) (có 1 cách)
Chọn a có 6 cách \(\left(a\ne0\right)\)
Chọn b có 5 cách \(\left(b\ne a,b\ne c\right)\)
Vậy có \(6.5.1=30\) (cách)
\(TH_2:c=2,4,6\) (có 3 cách)
Chọn a có 5 cách \(\left(a\ne0,a\ne c\right)\)
Chọn b có 5 cách \(\left(b\ne a,b\ne c\right)\)
Vậy có \(5.5.3=75\) (cách)
Vậy từ 0,2,3,4,5,6,7 có thể lập được \(75+30=105\) số tự nhiên chẵn có 3 chữ số khác nhau.