Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
b: \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)
\(x^6-2x^3y+y^2=\left(x^3-y\right)^2\)
b: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)
\(-a^2-2a-1=-\left(a+1\right)^2\)
\(a,36-4a^2+20ab-25b^2\)
\(=6^2-\left(2a-5b\right)^2=\left(6-2a+5b\right)\left(6+2a-5b\right)\)\(b,x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
\(d,5a^2-10a^2b+5ab^2-10a+10b\)
\(=5a^2-5a^2b-5a^2b+5ab^2-10a+10b\)
\(=5a\left(a-b\right)-5ab\left(a-b\right)-10\left(a-b\right)\)
\(=\left(a-b\right)\left(5a-5ab-10\right)\)
mk ko hỉu cái đề của bn: Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu ♥
Có phải bằng Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu là yo
mk ghi đáp án, ko phân tích đc thì IB mk
a) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
b) \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)
c) \(x^6+y^2-2x^3y=\left(x^3-y\right)^2\)
d) \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(3x^2+y^2\right)\)
e) \(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)
f) \(-a^2-2a-1=-\left(a+1\right)^2\)
g) \(27b^3-8a^3=\left(3b-2a\right)\left(9b^2+6ab+4a^2\right)\)
h) \(x^3+9x^2y+27xy^2+27y^3=\left(x+3y\right)^3\)
i) \(16x^2-9\left(x+y\right)^2=\left(x-3y\right)\left(7x+3y\right)\)
dài quá, làm từ từ nhé
1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)
\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\left(a-2b\right)\)
2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)
\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)
3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)
\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2-2x+1\right)\left(2x+1\right)\)
\(=\left(-x-1\right)\left(2x+1\right)\)
4, câu này đề thiếu
5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)
\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)
\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)
\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)
\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)
Ta có:
3a+2b-c-d=1 (1)
2a+2b-c+2d=2 (2)
4a-2b-2c+d=3 (3)
8a+b-6c+d=4 (4)
(1)+(2)+(3)-(4) vế theo vế ta được:
a+b+c+d=1+2+3-4=2
Vâp a+b+c+d=2
a) = 9x2 - ( y2 - 10y + 25y2 ) = ( 3x )2 - ( y - 5 )2 = ( 3x - y + 5 )( 3x + y - 5 )
b) = ( x3 - 8 ) - ( x2 - 4x + 4 ) = ( x - 2 )( x2 + 2x + 4 ) - ( x - 2 )2 = ( x - 2 )( x2 + x + 6 )
c) = ( 4a2 - 4a + 1 ) - ( b2 - 2bc + c2 ) = ( 2a - 1 )2 - ( b - c )2 = ( 2a - b + c - 1 )( 2a + b - c - 1 )
d) = ( a3 + 3a2 + 3a + 1 ) - 27b3 = ( a + 1 )3 - ( 3b )3 = ( a - 3b + 1 )( a2 + 9b2 + 3ab + 3b )
a. \(9x^2-\left(y^2-10y+25\right)=9x^2-\left(y-5\right)^2=\left(3x-y+5\right)\left(3x+y-5\right)\)
b.\(x^3-8-x^2+4x-4=\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)^2=\left(x-2\right)\left(x^2+x+6\right)\)
c.\(\left(4a^2-4a+1\right)-\left(b^2-2bc+c^2\right)=\left(2a-1\right)^2-\left(b-c\right)^2=\left(2a-1+b-c\right)\left(2a-1-b+c\right)\)
d.\(\left(a^3+3a^2+3a+1\right)-27b^3=\left(a+1\right)^3-\left(3b\right)^3=\left(a+1-3b\right)\left[\left(a+1\right)^2+3b\left(a+1\right)+9b^2\right]\)