K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 7 2020

1.

\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)

\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)

\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)

\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)

2.

Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A

\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)

b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua

\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)

\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

Vậy d luôn đi qua \(B\left(-1;5\right)\)

24 tháng 10 2020

omae wa mou shindeiru

23 tháng 12 2018

Dăm ba cái bài này . Ui người ta nói nó dễ !!!

a  ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)

b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0 

=> điểm A( 2 ; 0 ) 

Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m 

                                  <=> 0 = 2m - 2 +m 

                                  <=> 0 + 2 = 2m + m

                                  <=> 2       = 3m

                                  <=> m     = 2/3 

c ) 

Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 ) 

Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)

=> \(B\left(0;\sqrt{2}\right)\)

Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)

                           \(\Rightarrow m=\sqrt{2}\)