K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 4 2021

Phương trình đường thẳng d có dạng:

\(y=kx-2k+1\)

Tọa độ A và B có dạng: \(A\left(\dfrac{2k-1}{k};0\right)\) ; \(B\left(0;-2k+1\right)\)

Để A, B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2k-1}{k}>0\\-2k+1>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó ta có: \(S_{OAB}=\dfrac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)

\(\Rightarrow\left(\dfrac{2k-1}{k}\right)\left(-2k+1\right)=8\)

\(\Leftrightarrow4k^2-4k+1=-8k\Leftrightarrow4k^2+4k+1=0\Rightarrow k=-\dfrac{1}{2}\)

Phương trình d: \(y=-\dfrac{1}{2}x+2\)

9 tháng 3 2023

Help

 

19 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Lời giải:

Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:

$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$

$A\in Ox\Rightarrow y_A=0$

$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$

$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$

$B\in Oy\Rightarrow x_B=0$

$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$

$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$

Diện tích tam giác $ABC$:

$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$

Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$

Thay vào PTĐT $(d)$:

$4bx+by-(4b+4b)=0$

$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$

$\Rightarrow 4x+y-8=0$

Đây chính là PTĐT cần tìm.

19 tháng 2 2022

Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với

NV
29 tháng 5 2020

Do OAB cân \(\Rightarrow OAB\) vuông cân tại O

\(\Rightarrow\widehat{OAB}=45^0\)

\(\Rightarrow\) Đường thẳng d tạo với trục Ox một góc 45 độ hoặc 135 độ

\(\Rightarrow\) Đường thẳng d có hệ số góc bằng 1 hoặc -1 \(\Rightarrow\) d nhận \(\left(1;1\right)\) hoặc \(\left(1;-1\right)\) là vtpt

Có 2 pt d thỏa mãn:

\(\left[{}\begin{matrix}1\left(x+2\right)+1\left(y+4\right)=0\\1\left(x+2\right)-1\left(y+4\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+y+6=0\\x-y-2=0\end{matrix}\right.\)

2 tháng 3 2021

Đường thẳng đó có phương trình trên đoạn chắn là

\(\dfrac{x}{a}+\dfrac{y}{b}=1\) (d)

Do d đi qua A(1; 2) ⇒ \(\dfrac{1}{a}+\dfrac{2}{b}=1\) (1)

M,N lần lượt là giao điểm của d vs Ox, Oy

⇒ \(\left\{{}\begin{matrix}OM=\left|a\right|\\ON=\left|b\right|\end{matrix}\right.\); Kết hợp giả thiết 

⇒ |b| = 2|a|

⇒ \(\left[{}\begin{matrix}a=\dfrac{b}{2}\\a=\dfrac{-b}{2}\end{matrix}\right.\)

Nếu a = \(\dfrac{b}{2}\), kết hợp (1) ⇒ \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

Phương trình trên đoạn chắn là \(\dfrac{x}{2}+\dfrac{y}{4}=1\)

⇒ Phương trình tổng quát : 2x + y - 4 = 0

Nếu a = \(-\dfrac{b}{2}\) kết hợp (1) không có a,b

Vậy chỉ có 1 đường thẳng thỏa mãn đề bài

Đường thẳng đó có phương trình là

2x + y - 4 = 0