Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng d có dạng:
\(y=kx-2k+1\)
Tọa độ A và B có dạng: \(A\left(\dfrac{2k-1}{k};0\right)\) ; \(B\left(0;-2k+1\right)\)
Để A, B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2k-1}{k}>0\\-2k+1>0\end{matrix}\right.\) \(\Rightarrow k< 0\)
Khi đó ta có: \(S_{OAB}=\dfrac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)
\(\Rightarrow\left(\dfrac{2k-1}{k}\right)\left(-2k+1\right)=8\)
\(\Leftrightarrow4k^2-4k+1=-8k\Leftrightarrow4k^2+4k+1=0\Rightarrow k=-\dfrac{1}{2}\)
Phương trình d: \(y=-\dfrac{1}{2}x+2\)
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)
Đáp án: D
Đường thẳng d đi qua A cắt Ox, Oy tại hai điểm M, N có dạng:
Vì tam giác OMN cân nên |a| = |b|
Vì d đi qua A(2;-1) nằm ở góc phần tư thứ tư nên b = -a, a > 0
Suy ra, đường thẳng MN có dạng:
MN đi qua A(2;-1) nên
Vậy đường thẳng MN có dạng:
Ta có: \(A\left(x_A;0\right)\) ; \(B\left(0;y_B\right)\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+0}{2}=5\\\dfrac{0+y_B}{2}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(10;0\right)\\B\left(0;-6\right)\end{matrix}\right.\)
Phương trình d theo đoạn chắn:
\(\dfrac{x}{10}+\dfrac{y}{-6}=1\Leftrightarrow-3x+5y+30=0\)
Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất
Do OAB cân \(\Rightarrow OAB\) vuông cân tại O
\(\Rightarrow\widehat{OAB}=45^0\)
\(\Rightarrow\) Đường thẳng d tạo với trục Ox một góc 45 độ hoặc 135 độ
\(\Rightarrow\) Đường thẳng d có hệ số góc bằng 1 hoặc -1 \(\Rightarrow\) d nhận \(\left(1;1\right)\) hoặc \(\left(1;-1\right)\) là vtpt
Có 2 pt d thỏa mãn:
\(\left[{}\begin{matrix}1\left(x+2\right)+1\left(y+4\right)=0\\1\left(x+2\right)-1\left(y+4\right)=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+y+6=0\\x-y-2=0\end{matrix}\right.\)