Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem lại đầu bài đi bạn ơi, phương trình đường thẳng sai rồi ...
Xét phương trình hoành độ giao điểm
\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)
Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có
\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)
theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)
\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)
Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)
aPt hoành độ giao điểm là x2=mx+1
<=>x2-mx-1=0
\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)
=>đpcm
b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau
tính (d) giao trục OY tại K
=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra
Phương trình hoành độ giao điểm: \(x^2-2mx-2=0\)
Do \(ac=-2< 0\Rightarrow\) d luôn cắt (P) tại 2 điểm có hoành độ trái dấu lần lượt là \(A\left(x_A;y_A\right)\) và \(B\left(x_B;y_B\right)\) trong đó \(x_A< 0\), \(x_B>0\)
Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=2m\\x_Ax_B=-2\end{matrix}\right.\)
Gọi \(C\left(x_A;0\right)\) và \(D\left(x_B;0\right)\) là 2 điểm thuộc trục hoành thì ABDC là hình thang vuông tại C và D, các tam giác OAC và ODB vuông.
\(\Rightarrow S_{OAB}=S_{ABDC}-S_{OAC}-S_{OBD}=\frac{3}{2}\)
\(\Rightarrow\left(AC+BD\right).CD-AC.OC-BD.OD=3\)
\(\Leftrightarrow\left(y_A+y_B\right)\left(x_B-x_A\right)-y_A\left(x_O-x_A\right)-y_B\left(x_B-x_O\right)=3\)
\(\Leftrightarrow y_Ax_B-x_Ay_B=3\)
\(\Leftrightarrow\left(mx_A+1\right)x_B-x_A\left(mx_B+1\right)=3\)
\(\Leftrightarrow x_B-x_A=3\)
Kết hợp Viet ta có hệ: \(\left\{{}\begin{matrix}x_A+x_B=2m\\x_B-x_A=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=m+\frac{3}{2}\\x_A=m-\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left(m-\frac{3}{2}\right)\left(m+\frac{3}{2}\right)=-2\)
\(\Rightarrow m^2-\frac{9}{4}=-2\)
\(\Rightarrow m=\pm\frac{1}{2}\)
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)