K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

\(A=2^3-3.2^2.x+3.2.x^2-x^3\)

\(A=\left(2-x\right)^3\)

\(B=\left(2x\right)^3-2.\left(2x\right)^2.y+3.2x.y^2-y^3\)

\(B=\left(2x-y\right)^3\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

i)

$I=x^4+4x^3-x^2-14x+6$

$=(x^4+4x^4+4x^2)-5x^2-14x+6$

$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$

$=(x^2+2x-3)^2+(x^2-2x+1)-4$

$=(x-1)^2(x+3)^2+(x-1)^2-4$

$=(x-1)^2[(x+3)^2+1]-4\geq -4$

Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$

k)

$K=x^4+2x^3-10x^2-16x+45$

$=(x^4+2x^3+x^2)-11x^2-16x+45$

$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$

$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$

$=(x^2+x-6)^2+(x-2)^2+5$

$=[(x-2)(x+3)]^2+(x-2)^2+5$

$=(x-2)^2[(x+3)^2+1]+5\geq 5$

Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

g)

$G=x^4+4x^3+10x^2+12x+11$

$=(x^4+4x^3+4x^2)+6x^2+12x+11$

$=(x^2+2x)^2+6(x^2+2x)+11$

Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$

$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$

Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$

h)

$H=x^4-6x^3+x^2+24x+18$

$=(x^4-6x^3+9x^2)-8x^2+24x+18$

$=(x^2-3x)^2-8(x^2-3x)+18$

$=(x^2-3x)^2-8(x^2-3x)+16+2$

$=(x^2-3x-4)^2+2\geq 2$

Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$

11 tháng 12 2022

a: Sửa đề: x^3-x^2+5x-5

=x^2(x-1)+5(x-1)

=(x-1)(x^2+5)

b: x^3+4x^2+x-6

=x^3-x^2+5x^2-5x+6x-6

=(x-1)(x^2+5x+6)

=(x-1)(x+2)(x+3)

c: \(=\left(x+2\right)^3+y^3\)

\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)

15 tháng 9 2020

A = x3 + 3x2 + 3x - 899

= (x3 + 3x2 + 3x + 1) - 900

= (x + 1)3 - 900

= (29 + 1)3 - 900 = 303 - 900 = 26100

B = x3 - 6x2 + 12x + 10

= (x3 - 6x2 + 12x - 8) + 18

= (x - 2)3 + 18

= (12 - 2)3 + 18 = 103 + 18 = 1000 + 18 = 1018

c) C = 8x3 - 27y3

= (2x)3 - (3y)3

= (2x - 3y)(4x2 + 6xy + 9y2)

= (2x - 3y)(4x2 - 12xy + 9y2) + (2x - 3y).18xy

= (2x - 3y)(2x - 3y)2 + (2x - 3y).18xy

= (2x - 3y)3 + (2x - 3y).18xy

= 53 + 5.18.4

= 125 - 360

= -235

D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)

= (x + y)(x2 - xy + y2) + 3x3y + 3xy3 + 6x2y2

= x2 + y2 - xy + 3x3y + 3xy3 + 6x2y2 

= (x + y)2 - 3xy + 3x3y + 3xy3 + 6x2y2 

= 1 - 3xy(2xy - 1) + 3xy(x2 + y2)

= 1 - 3xy(x2 + y2 + 2xy - 1)

= 1 - 3xy[(x + y)2 - 1]

= 1 - 0 = 1

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

Bài 7: Phân tích đa thức thành nhân tử

a) Ta có: \(a^2-b^2-2a+2b\)

\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-2\right)\)

b) Ta có: \(3x-3y-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

c) Ta có: \(16-x^2+4xy-4y^2\)

\(=16-\left(x^2-4xy+4y^2\right)\)

\(=16-\left(x-2y\right)^2\)

\(=\left(4-x+2y\right)\left(4+x-2y\right)\)

d) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

\(=\left(5-x-4y\right)\left(3x+2y+3\right)\)

e) Ta có: \(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

f) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)

\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)

\(=2x\cdot\left[x^2+6x+9-\left(x^2-9\right)+x^2-6x+9\right]\)

\(=2x\cdot\left(2x^2+18-x^2+9\right)\)

\(=2x\cdot\left(x^2+27\right)\)

g) Ta có: \(9x^2-3xy+y-6x+1\)

\(=\left(9x^2-6x+1\right)-y\left(3x-1\right)\)

\(=\left(3x-1\right)^2-y\left(3x-1\right)\)

\(=\left(3x-1\right)\left(3x-1-y\right)\)

h) Ta có: \(x^3-4x^2+12x-27\)

\(=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

2 tháng 10 2017

\(1,3x-24y=3\left(x-8y\right)\)

\(2,6x^3y^2-12x^2y^2-3x^2y=3x^2y\left(2xy-4y-1\right)\)

\(3,7x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(7x-8\right)\)

...(tương tự)

\(10,5x-5y+x^2-xy=5\left(x-y\right)+x\left(x-y\right)=\left(x-y\right)\left(x+5\right)\)

\(11,x^2+2xy+y^2-16=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)