K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

30 tháng 10 2019

a) \(2x^2+3x-8=0\)

Ta có: \(\Delta=3^2+4.2.8=73\)

pt có 2 nghiệm

\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)

d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

Đặt \(x^2+2x=t\)

\(pt\Leftrightarrow t^2-2t-3=0\)

Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)

pt trên có 2 nghiệm

\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)

\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)

\(\Rightarrow x\in\left\{-3;-1;1\right\}\)

30 tháng 10 2019

c) \(x^4+8x^3+19x^2+12x=0\)

\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)

\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)

\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)

29 tháng 7 2021

Bài 1 :

a) (3a+4b)3+(3a-4b)3-48a2b2

=27a3+108a2b+144ab2+64b3+27a3-108a2b+144ab2-64b3-48a2b2

=54a3+288ab2-48a2b2

=2a(27a2+144b2-24ab)

b) (5x+2y)(5x-2y)+(2x-y)3+(2x+y)3

=25x2-4y2+8x3-12x2y+6xy2-y3+8x3+12x2y+6xy2+y3

=16x3+25x2-y2+12xy2

=x2(16x+25)-y2(1-12x)

29 tháng 7 2021

Bài 2 :

\(x^2-8x+7=0\)

\(\Leftrightarrow x^2-x-7x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

b)\(x^3-4x^2+3x=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=1\end{cases}}\)

c)Nếu đề đổi thành =1 thì có vẻ hợp lí hơn

d)\(\left(3x-1\right)^3-3\left(3x+2\right)^2+13=0\)

\(\Leftrightarrow27x^3-27x^2+9x-1-3\left(9x^2+12x+4\right)+13=0\)

\(\Leftrightarrow27x^3-27x^2+9x-1-27x^2-36x-12+13=0\)

\(\Leftrightarrow27x^3-54x^2-27x=0\)

\(\Leftrightarrow27x\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}27x=0\\x^2-2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\-\left(x^2+2x+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\-\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

#H

NV
25 tháng 6 2019

\(2x^4+3x^3-9x^2-3x+2\)

\(=2x^4+5x^3-2x^2-2x^3-5x^2+2x-2x^2-5x+2\)

\(=x^2\left(2x^2+5x-2\right)-x\left(2x^2+5x-2\right)-\left(2x^2+5x-2\right)\)

\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

b/

\(x^4-3x^3-6x^2+3x+1\)

\(=x^4-4x^3-x^2+x^3-4x^2-x-x^2+4x+1\)

\(=x^2\left(x^2-4x-1\right)+x\left(x^2-4x-1\right)-\left(x^2-4x-1\right)\)

\(=\left(x^2+x-1\right)\left(x^2-4x-1\right)\)

NV
25 tháng 6 2019

c/

\(x^4-6x^3+12x^2-14x+3\)

\(=x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3\)

\(=x^2\left(x^2-4x+1\right)-2x\left(x^2-4x+1\right)+3\left(x^2-4x+1\right)\)

\(=\left(x^2-2x+3\right)\left(x^2-4x+1\right)\)

e/

Đề sai, sao có 2 hạng tử chứa \(x^4\) thế kia?

6 tháng 9 2016

a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)

b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)

29 tháng 7 2017

c. \(8x^3-12x^2+6x-1=0\)

\(\Rightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow x=\frac{1}{2}\)