Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(\frac{1}{x}+\frac{y}{3}=\frac{2}{5}\)
\(\Rightarrow\frac{3+xy}{3x}=\frac{2}{5}\)
\(\Rightarrow5\left(3+xy\right)=2.3x\)
\(\Rightarrow15+5xy=6x\)
\(\Rightarrow15=6x-5xy=x\left(6-5y\right)\)
Ta có bảng sau:
\(x\) | 1 | 3 | 5 | 15 |
\(6-5y\) | 15 | 5 | 3 | 1 |
\(y\) | \(\frac{-9}{5}\)(loại) | \(\frac{1}{5}\)(loại) | \(\frac{3}{5}\)(loại) | \(1\)(TM) |
Vậy \(\left\{{}\begin{matrix}x=15\\y=1\end{matrix}\right.\) thỏa mãn đề bài
a) Giả sử ta kẻ My \(\perp\)BC cắt Bx tại A'
Kết hợp với ^CBx = 450 suy ra \(\Delta\)A'MB vuông cân tại M
=> \(\frac{BM}{BA'}=\frac{1}{\sqrt{2}}\)Lại có \(\frac{BM}{BA}=\frac{1}{\sqrt{2}}\)nên \(BA'\equiv BA\)
\(\Rightarrow A'\equiv A\)nên AM \(\perp\)BC
Kết hợp với CI \(\perp\)AD suy ra N là trực tâm của \(\Delta\)ADC
Suy ra DN \(\perp\)AC (đpcm)
b) Xét \(\Delta\)AMB và \(\Delta\)AMC có:
MB = MC (gt)
^AMB = ^AMC ( = 900)
AM : cạnh chung
Do đó \(\Delta\)AMB = \(\Delta\)AMC (c.g.c)
=> AB = AC (hai cạnh tương ứng) và ^MBA = ^MCA (=450) => ^BAC = 900
Xét \(\Delta\)AIC (^AIC = 900) và \(\Delta\)AHB (^AHB = 900) có:
AB = AC (cmt)
^ABH = ^ACI (cùng phụ với ^BAH)
Do đó \(\Delta\)CIA = \(\Delta\)AHB (ch-gn)
=> AI = BH
=> BH2 + CI2 = AI2 +CI2 =AC2 (không đổi)
c) Xét \(\Delta\)BHM và \(\Delta\)AIM có:
AI = BH (cmt)
^HBM = ^IAM (cùng phụ với hai cặp góc đối đỉnh là ^BDH và ^ADM)
BM = AM (cmt)
Do đó \(\Delta\)BHM = \(\Delta\)AIM
=> HM = IM (1) và ^HMB = ^IMA
Mà ^IMA + ^IMD = 900 nên ^HMB + ^IMD = 900 (2)
Từ (1) và (2) suy ra \(\Delta\)HMI vuông cân tại M => ^HIM = 450
Lại có ^HIC = 900 nên IM là phân giác của ^HIC
Vậy tia phân giác của góc HIC luôn đi qua một điểm cố định M (đpcm)
B D H I A N M C
a,Vì :
\(AM\mp BC,CI\)\(\Omega\)\(AD,CI\)\(\Omega\)\(AM=N\)
\(\rightarrow N\)là trực tâm \(\Delta ADC\rightarrow DN\)\(\Omega\)\(AC\)
b,Vì :
\(\widehat{BAC}=45^O,\frac{BM}{BA}=\frac{1}{\sqrt{2}}\rightarrow\Delta ABM\) vuông cân tại \(M\)
\(\rightarrow\Delta ABC\) vuông cân tại \(A\)
\(\rightarrow AB=AC\)MÀ
\(\widehat{BAH}=\widehat{ACI}\left(+\widehat{DAC}=90^O\right),\widehat{AHB}\)
\(=\widehat{AIC}=90^O\)
\(\rightarrow\Delta ABH=\Delta CAI\left(g,c,g\right)\)
\(\rightarrow BH=AI\rightarrow BH^2+CI^2=AI^2+CI^2=AC^2=AB^2=2BM^2=\frac{BC^2}{2}=const\)
c,Ta có
\(\widehat{AIC}=\widehat{NMC}=90^O\rightarrow\widehat{IAN}=\widehat{NCM}\)
\(\rightarrow\Delta AIN~\Delta CMN\left(g.g\right)\rightarrow\frac{AN}{CN}=\frac{IN}{MN}\)
\(\rightarrow\Delta NIM~\Delta NAC\left(c.g.c\right)\rightarrow\widehat{MIN}=\widehat{NAC}=45^O\)Mà:
\(CI\) ! \(ID\rightarrow IM\)Là phân giác \(\widehat{CIH}\)\(\rightarrow\)Tia phân giác của góc HIC luôn đi qua 1 điểm M cố định.
Lưu ý : \(\mp\)Thay cho !
\(\Omega\)thay cho
NHiều công thức mk ko thấy nên là mk viết thay bằng cái khác tương tự xíu nha bn