K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

xem kĩ đề lại nha bạn

31 tháng 1 2022

Xét tứ giác \(ADCH\) có:

\(\widehat{D}=\widehat{C}=\widehat{H}=90^o\)

\(\Rightarrow ADCH\) là hình chữ nhật

\(\Rightarrow AH=DC=12cm\)

Xét \(\Delta ADC\left(\widehat{D}=90^o\right)\) có:

\(AC^2=AD^2+DC^2\) (định lí pitago)

\(\Rightarrow AD=\sqrt{AC^2-DC^2}=\sqrt{15^2-12^2}=9cm=HC\)

Xét \(\Delta ABH\left(\widehat{H}=90^o\right)\) có:

\(AB^2=AH^2+BH^2\) (định lí pitago)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{13^2-12^2}=5cm\)

\(\Rightarrow BC=BH+HC=5+9=14cm\)

Vậy \(BC=14cm\)

31 tháng 1 2022

Ảnh thiếu mấy điểm C, H

16 tháng 3 2022

lỗi ảnh

a: Xét ΔABD và ΔACD có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

=>BD=CD và góc ADB=góc ADC=180/2=90 độ

=>AD vuông góc bC

b: BD=CD=18/2=9cm

AD=căn 15^2-9^2=12cm

c: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

góc KBC=góc HCB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

Suy ra: CB=CD

26 tháng 4 2019

a) AC = ? 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:

AC2 = AB2 + BC2

        = 52 + 122 = 25 + 144 = 169 

⇒ AC = 13 (cm)

b) ΔEAD cân

Xét hai tam giác vuông ABE và DBE có:

AB = BD (gt)

BE là cạnh chung

Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)

⇒ EA = ED (hai cạnh tương ứng)

⇒ ΔEAD cân tại E.

c) K là trung điểm của DC.

Ta có: BE = 4, BC = 12 

⇒ BE = 1/3 BC 

Hay E là trọng tâm của ΔACD.

⇒ AE là đường trung tuyến ứng với cạnh DC

⇒ K là trung điểm của DC.

d) AD < 4EK 

Ta có: EA > AB, ED > BD

Mà AD = AB + BD,     AE = ED (câu b)

⇒ 2AE > AD 

Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA 

Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)

26 tháng 4 2019

B A D C E

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

10 tháng 1 2021

Bạn nên ktra lại con số 15cm

a/ Áp dụng định lí Pythagoras cho t/g ABC vuông tại A có

\(AB^2+AC^2=BC^2\)

=> \(AC=\sqrt{161}\) (cm)

b/ t/g ABH vuông tại H và t/g EBH vuông tại H có

AB = EB

BH : chung

=> t/g ABH=t/g EBH (ch-cgv)

=> HA = HE (2 cạnh t/ứ)

c/ Có \(\widehat{BAH}=\widehat{BEH}\) (do t/g ABH = t/g EBH)

=> \(180^o-\widehat{BAH}=180^o-\widehat{BEH}\)

=> \(\widehat{EAD}=\widehat{AEC}\)

=> t/g AEC = t/g EAD

=> AC = DE

d/

AB = BEAD = EC

=> AB + AD = BE + EC

=> BD = BC=> t/g BCD cân tại B

Có t/g ABH = t/g EBH

=> \(\widehat{ABH}=\widehat{EBH}\)

=> BH là pg góc ABEHay BH là pg góc DBCXét t/g BDC có BH là đường pg

=> BH đồng thời là đường cao

=> BH ⊥ DC