Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Suy ra các giá trị trong trị tuyệt đối đều =0
\(\Rightarrow x-\frac{1}{2012}=0\Rightarrow x=\frac{1}{2012}\)
\(\left|x+y\right|=0\Rightarrow\left|\frac{1}{2012}+y\right|=0\Rightarrow y=-\frac{1}{2012}\)
Đúng đó nha
Ta có:
(x - y) + (y - z) + (z - t) + (t - x)
= x - y + y - z + z - t + t - x
= 0 là số chẵn
Mà |x - y| + |y - z| + |z - t| + |t - x| có cùng tính chẵn lẻ với (x - y) + (y - z) + (z - t) + (t - z)
=> đpcm
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)
Bình phương 2 vế của (1) ta được:
\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)
Dấu = khi \(xy\ge0\)
b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)
Áp dụng câu a ta có:
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)
Suy ra đpcm
|2x - 1| + |1 - y| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
=> 1-y = 0
=> y = 1 - 0 = 0
Vậy x = 1/2 tại y = 0
|x - 3y| + (y+1)2 = 0
=> \(\left(y+1\right)^2=0\rightarrow y+1=0;y=-1\)
Thay vào ta có: |x - 3.(-1) | = 0
=> x - (-3) = 0
=> x =-3
Vây x = -3 tại y = -1
Chứng minh đơn giản nhất là bằng cách bình phương 2 vế
\(\text{a) }\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\)
Do bất đẳng thức cuối cùng đúng nên bất đẳng thức ban đầu đúng.
Dấu "=" xảy ra khi \(\left|xy\right|=xy\Leftrightarrow xy\ge0\)
b/ Ta chứng minh \(\left|x-y\right|\ge\left|\left|x\right|-\left|y\right|\right|\Leftrightarrow\left(\left|x-y\right|\right)^2\ge\left(\left|\left|x\right|-\left|y\right|\right|\right)^2\)
\(\Leftrightarrow x^2-2xy+y^2\ge x^2-2\left|xy\right|+y^2\)
\(\Leftrightarrow-2xy\ge-2\left|xy\right|\Leftrightarrow xy\le\left|xy\right|\)
Do bất đẳng thức cuối cùng đúng nên bất đẳng thức ban đầu đúng.
Dấu "=" xảy ra khi \(xy=\left|xy\right|\Leftrightarrow xy\ge0\)
a) \(\left|2+3x\right|=\left|4x-3\right|\)
\(\Rightarrow2+3x=4x-3\)
\(\Rightarrow2+3=4x-3x\)
\(\Rightarrow5=x\)
Vậy x=5
b) \(\left|x-y-2\right|+\left|y+3\right|=0\)
\(\Leftrightarrow\left|x-y-2\right|=0\) và \(\left|y+3\right|=0\)
\(\Leftrightarrow x-y-2=0\) và \(y+3=0\)
\(\Leftrightarrow x-y=0+2\) và \(y=0+3\)
\(\Leftrightarrow x-y=2\) và \(y=3\)
Vì y=3 nên ta có:
\(x-3=2\)
\(x=2+3\)
\(x=5\)
Vậy \(x=5;y=3\)
b) |x-y-2| + |y+3| = 0
Vì |x-y-2| \(\ge0\)với mọi x;y
|y+3| \(\ge0\)với mọi x;y
\(\Rightarrow\)|x-y-2| + |y+3| = 0 \(\Leftrightarrow\)x - y - 2 = 0 và y + 3 =0
\(\Leftrightarrow\)y = 3 và x = 5
Vậy x = 5; y= 3
Phần a rất đơn giản nên mình sẽ không trình bày. Mình chỉ hướng dẫn thôi: Bạn hãy đi xét hai trường hợp 2 + 3x dương và 2 +3x âm.
4x - 3 dương và 4x - 3 âm. Lần lượt thay kết quả vào biểu thức là bạn sẽ tìm ra được giá trị của x và y.
Bổ đề (I): Cho 2 số thực a, b thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html
Quay trở lại giải bài toán ban đầu.
Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)
Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)
Thử lại thấy thoả mãn.
Vậy x = 2014, y = 2015.
Ta có
\(\begin{cases}\left|x+1\right|\ge0\\\left|y+2\right|\ge0\\\left|x-y+z\right|\ge0\\\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+1=0\\y+2=0\\x-y+2=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\x-y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\\left(-1\right)-\left(-2\right)+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\1+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\y=-2\\z=-1\end{cases}\)
Ta có : \(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)
Để tìm được vế 3 ta xết 2 vế đầu tiên :
\(\left|x+2\right|+\left|y+2\right|=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\y+2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\y=-2\end{array}\right.\)
Từ đó ta có \(x=-1;y=-2\)
Ta có : \(\left|-1+2+z\right|=0\Rightarrow z=-1\)
Vậy \(\left[\begin{array}{nghiempt}x=-1\\y=-2\\z=-1\end{array}\right.\)
Không biết đúng không nữa
Vì / x-y/ >/ 0
/ y-50/ >/0
mà / x -y/ + / y -50/ </0
=>x -y = y - 50 = 0
=> x =y = 50
=> x +y =50 +50 =100