K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

suy ra x =2^2015 hoặc -2^2015

mà 2^2015+(-2^2015)=0

suy ra tổng các giá trị của x bằng 0

vậy....

 

28 tháng 2 2016

(x+3)(x2-16)(x3-8)(x4-9)=0

<=>có 4 TH

TH1:x+3=0=>x=-3

TH2:x2-16=0=>x2=16=>x E {-4;4}

TH3:x3-8=0=>x3=8=>x=2

TH4:x4-9=0=>x4=9(loại)

Tổng các giá trĩ của x là:(-4)+4+2+(3)=0+2+(-3)=2+(-3)=-1

3 tháng 3 2016

=>*x+3=0 =>x=-3

*x^2-16=0=>x=4;-4

*x^3-8=0=>x=2

x^4-9=0=>x=căn 3;-căn 3

=>tổng các giá trị của x là -1

3 tháng 3 2016

Ta có : (x + 3) (x2 - 16) (x3 - 8) (x4 - 9) = 0

Có 4 TH xảy ra :

TH1 : x + 3 = 0 => x = -3

TH2 : x2 - 16 = 0 => x2 = 16 => x = ±4

TH3 : x3 - 8 = 0 => x3 = 8 => x = 2

TH4 : x4 - 9 = 0 => x4 = (x2)2 = 9 => x2 = ±3  (ko thoả mãn)

Tổng các giá trị x thỏa mãn là : -3 + 4 - 4 + 2 = -1

25 tháng 4 2018

1 do (x-1)4 là số tự nhiên,(y+1)^4 là số tự nhiên 

nên để tổng bằng 0 thì cả (x-1)4 và (y+1)^4cùng bằng 0

nên x=0,y=-1

thay x,y vào rồi tính C

25 tháng 4 2018

ta có:\(A=\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|=14x\left(1\right)\)

do \(\left|x+1\right|\ge0,\left|x+2\right|\ge0,....,\left|x+9\right|\ge0\)

\(\Rightarrow14x>0\)\(\Rightarrow x>0\)

khi đó (1) trở thành:x+1+x+2+x+3+...+x+9=14x

\(\Rightarrow9x+45=14x\)

\(\Rightarrow45=5x\)

\(\Rightarrow x=9\)

22 tháng 1 2017

Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)

Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)

\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Thay x=2 và y=-1 vào biểu thức P ta có:

\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)

Vậy ................

22 tháng 1 2017

\(P=2.2^3-15+2016=2017\)

16 tháng 8 2016

\(\left(x^2-2x\right)\left|3x-7\right|=0\)

=> TH1: \(x^2-2x=0\) => \(x\left(x-2\right)=0\)

=> x = 0 hoặc 2

TH2: \(3x-7=0\)

=> \(3x=-7\) => \(x=-\frac{3}{7}\)

Vậy có 3 giá trị x thoả mãn

16 tháng 8 2016

(x2-2x)*|3x-7|=0

=>x2-2x=0 hoặc |3x-7|=0

Xét x2-2x=0 =>x(x-2)=0

=>x=0 hoặc 2

Xét |3x-7|=0 =>3x-7=0

=>3x=7

=>x=7/3

Vậy có 3 giá trị x thỏa mãn

4 tháng 10 2016

\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)

\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)

\(\Rightarrow x=2013;y=2014;z=2015\)

Đến đây bạn tự thay vào rồi tính nhé!

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)