Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính:
(-2)2.3 -(110+8):(-3)2
=4.3-(1+8):9
=12-9:9
=12-1
=11
S=30+32+34+36+...+32020
32.S=32+34+36+...+32020+32021
9S-S=(32+34+36+...+32020+32021)-(30+32+34+36+...+32020)
8S=32021-30
\(S=\frac{3^{2021}-1}{8}\)
A=\(1+2^1+2^2+2^3+2^4+...+2^{2015}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2015}+2^{2016}\)
2A-A=\(2^{2016}-1\)
Vậy A=\(2^{2016}-1\)
Chú ý rằng trong tích có thừa số 196-142
Mà 196-142=196-196=0
Vậy tích bằng 0
Trả lời:
\(\left(196-1^2\right).\left(196-2^2\right).....\left(196-25^2\right)\)
\(=\left(196-1^2\right).\left(196-2^2\right).....\left(196-14^2\right).....\left(196-25^2\right)\)
\(=\left(196-1^2\right).\left(196-2^2\right).....\left(196-196\right).....\left(196-25^2\right)\)
\(=\left(196-1^2\right).\left(196-2^2\right).....0.\left(196-25^2\right)\)
\(=0\)
Hok tốt!
Good girl
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
- Vì :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)
Cộng vế với vế , ta suy ra
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{n-1}-\frac{1}{n}\)
= \(1-\frac{1}{n}< 1\)
=> A<1 ( đpcm )
Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)=\(\frac{1}{1}-\frac{1}{n}\)<1 => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
\(1^3=0+1\)
\(2^3=2+1.2.3\)
.......................................
\(10^3=10+9.10.11\)
\(=1+2+1.2.3+3+2.3.4+....+10+9.10.11\)
\(=\left(1+2+....+10\right)+\left(1.2.3+....+9.10.11\right)\)
Đặt (1 + 2 + ... + 10) là A ; (1.2.3 + 2 .3.4 + .... + 9.10.11) là B . Ta có :
\(A=\left(1+2+...+10\right)\)
\(A=\frac{\left(10+1\right).10}{2}\)
\(A=55\)
\(B=1.2.3+2.3.4+....+9.10.11\)
\(4B=1.2.3.4+2.3.4.4+...+9.10.11.4\)
\(4B=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+9.10.11.\left(12-8\right)\)
\(4B=1.2.3.4+2.3.4.5+....+9.10.11.12\)
\(4B=9.10.11.12=11880\)
\(\Rightarrow B=\frac{11880}{4}=2970\)
\(\Rightarrow1^3+2^3+....+10^3=A+B=55+2970=3025\)
=55^3
=166375