K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

5B=5+52+53+...+5101

=>5B-B=5101-1

=>4B=5101-1

=>B=(5101-1)/4

17 tháng 11 2018

a)

   \(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

b)

  Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)

\(3^2D=3^3+3^5+...+3^{101}\)

\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)

\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)

Tương tự \(E=\frac{3^{102}-3^2}{8}\)

Ta có \(D-E=B\)

Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)

Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)

27 tháng 11 2018

c,\(C=1+5^2+5^4+5^6+...+5^{200}\)

\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)

\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)

\(=5^{202}-1\)

\(\Rightarrow C=\frac{5^{202}-1}{24}\)

17 tháng 11 2018

A = 1 + 2 + 22 + ... + 2100

=> 2A = 2 + 22 + 23 + ... + 2100 + 2101

=> 2A - A = ( 2 + 22 + 2+ ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )

=> A = 2101 - 1

17 tháng 11 2018

A = 1 + 2 +22+.....+2100

=>  2A =2  + 22 + 23+...+2100+2101

=> 2A - A = ( 2 + 22+23+.....+2100+2101) - ( 1 + 2 + 22+...+2100)

=> A = 2101 - 1

14 tháng 8 2018

b)Ghi đầu baì

=(1+2+3+...+100).(12+22+32+....+1002).(65.111-13.555)

=(1+2+3+...+100).(12+22+32+....+1002).(65.111-13.5.111)

=(1+2+3+...+100).(12+22+32+....+1002).(111.(65-65))

=(1+2+3+...+100).(12+22+32+....+1002).111.0

=(1+2+3+...+100).(12+22+32+....+1002).0

=0

13 tháng 8 2018

A = 2100 - 299 - 298 - ...-2-1

=> 2A = 2101 - 2100 - 299-...-22 - 2

=> 2A-A = 2101 - 2100 - 2100 + 1

A = 2101 - 2100.(1+1) + 1

A = 2101 - 2100. 2+1

A = 2101- 2101+1

A = 1

b) B = 1 - 5 + 52 - 53+...+598-599

=> 5B = 5 - 52+53-54+...+599-5100

=> 5B+B = -5100+1

6B = -5100+1

\(B=\frac{-5^{100}+1}{6}\)

24 tháng 7 2017

\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)

\(2A=2+2^2+2^3+...+2^{51}\)

\(2A-A=A=2^{51}-2^0\)

\(B=5+5^2+5^3+...+5^{99}+5^{100}\)

\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)

\(5B-B=4B=5^{101}-5\)

\(B=\frac{5^{101}-5}{4}\)

\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)

\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)

\(3C+C=4C=3^{2011}+3\)

\(C=\frac{3^{2011}+3}{4}\)

\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)

\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)

\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)

\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)

\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)

24 tháng 10 2023

A=20+21+22+23+...++23+...+250250

2�=2+22+23+...+2512A=2+22+23+...+251

2�−�=�=251−202AA=A=25120

�=5+52+53+...+599+5100B=5+52+53+...+599+5100

5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101

5�−�=4�=5101−55BB=4B=51015

�=5101−54B=451015

�=3−32+33−34+...+C=332+3334+...+32007−32008+32009−320103200732008+3200932010

3�=32−33+34−35+...−32008+32009−32010+320113C=3233+3435+...32008+3200932010+32011

3�+�=4�=32011+33C+C=4C=32011+3

�=32011+34C=432011+3

�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999

�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)

9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)

9�100−�100=8�100=5×(9100−1)9S100S100=8S100=5×(91001)

�100=5×(9100−1)8S100=85×(91001)

4 tháng 8 2020

  34.x+4 = 81x+3 <=>  34.x+4 = 33.x+9  <=> 4.x+4 = 3.x+9 <=> 4.x - 3.x = 9-4 <=> x=5

5 tháng 8 2020

Mk chỉ làm bài tính tổng thôi nhé!!!

A= 1+2+2^2+2^3+...+2^50

A.2= 2+2^2+2^3+...+2^50+2^51

A.2-A= (2+2^2+2^3+...+2^50+2^51)-(1+2+2^2+2^3+2^4+...+2^50)

A= 2^51-1

Vậy A= 2^51-1

B= 5+5^2+5^3+5^4+5^5+...+5^200

B.5= 5^2+5^3+5^4+...+5^200+5^201

B.5-B=5^201-5

B.4= 5^201-5

B= (5^201-5):4

Vậy B= (5^201-5):4

9 tháng 10 2015

Chơi câu khó nhất 

D = 4 + 42 + 43 + ... + 4n

4D = 42 + 43 + ... + 4n+1

3D = 4n+1 - 4

D = \(\frac{4^{n+1}-4}{3}\)

25 tháng 4 2019

Help Me

Tui cần gấp

Đúng tui k nhưng làm hẳn ra nha :)

Nếu lâu thì làm mẫu 1 vài phần OK :)

26 tháng 4 2019

a) \(2A=2^1+2^2+2^3+...+2^{2010}\)

=> \(2A-A=2^{2011}-2^0\Leftrightarrow A=2^{2011}-1\)

b) \(3B=3+3^2+3^3+3^4+...+3^{101}\)

=> \(3B-B=3^{101}-1\Leftrightarrow2B=3^{101}-1\Leftrightarrow B=\frac{1}{2}\left(3^{101}-1\right)\)

Tương tự Cx4, Dx5