Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+32+33+34+35+………..+399+3100
3A = 3+32+33+34+35+………..+3100+3101
3A - A = ( 3+32+33+34+35+………..+3100+3101 ) - ( 1+3+32+33+34+35+………..+399+3100 )
2A = 3101 - 1
A = \(\frac{3^{101}-1}{2}\)
a)2A=4+4^2+4^3+...+4^101
2A-A=4^101-1
A=4^101-1
khong bit phai hoi muon gioi phai hoc
J=6 + 16 + 30 + 48 +...+ 19600 + 19998
Chia cả 2 vế cho 2 ta được
B/2 = 3 + 8 + 15 + 24 + ......... + 98000+ 9999
B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101
B/2= 100/6[(100-1)x(2x100+1)] = 328350
-> B =328350x2=656700
K=2 + 5 + 9 + 14 + ....+ 4949 + 5049
Nhân cả 2 vế với 2 ta được
2xD=1x4+ 2x5+ 3x6+ 4x7+……..+98x101+99x102
2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)
2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2
2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)
2xD = 333300 + 9900 = 343200
-> D= 343200 :2 =171600
Lm A ví dụ trước nha :
\(A=1+2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2A=2+2^2+....+2^{101}\)
\(\Rightarrow A=2A-A=2^{101}-1\)
a,
B = 1 + 5 + 5^2 + 5^3 + ... + 5^100
5B = 5 + 5^2 + 5^3 + ... + 5^101
5B - B = [5 + 5^2 + 5^3 + ... + 5^101] - [1 + 5 + 5^2 + 5^3 + ... + 5^100]
4B = 5 + 5^2 + 5^3 + ... + 5^101 - 1 - 5 - 5^2 - 5^3 - ... - 5^100
4B = 5^101 - 1
B = \(\frac{5^{101}-1}{4}\)
b,
A = 1 - 3 + 3^2 - 3^3 + ... + 3^20 - 3^21
3A = 3 - 3^2 + 3^3 - 3^4 + ... + 3^21 - 3^22
3A - A = [3 - 3^2 + 3^3 - 3^4 + ... + 3^21 - 3^22] - [1 - 3 + 3^2 - 3^3 + ... + 3^20 - 3^21]
2A = 3 - 3^2 + 3^3 - 3^4 + ... + 3^21 - 3^22 - 1 + 3 - 3^2 + 3^3 + ... - 3^20 + 3^21
2A = 2[3 + 3^3 + 3^5 + ... + 3^21] - 2[3^2 + 3^4 + ... + 3^20] - 1
Đặt C = 3 + 3^3 + 3^5 + ... + 3^21
=> 3^2C = 3^3 + 3^5 + 3^7 + ... + 3^23
=> 9C - C = [3^3 + 3^5 + 3^7 + ... + 3^23] - [3 + 3^3 + 3^5 + ... + 3^21]
=> 8C = 3^3 + 3^5 + 3^7 + ... + 3^23 - 3 - 3^3 - 3^5 - ... - 3^21
=> 8C = 3^23 - 3
=> C = 3^23 - 3 / 8
=> 2[3 + 3^3 + 3^5 + ... + 3^21] = 3^23 - 3 / 8 * 2 = 3^23 - 3 / 4
Đặt D = 3^2 + 3^4 + ... + 3^20
=> 3^2D = 3^4 + 3^6 + ... + 3^22
=> 9D - D = [3^4 + 3^6 + ... + 3^22] - [3^2 + 3^4 + ... + 3^20]
=> 8D = 3^4 + 3^6 + ... + 3^22 - 3^2 - 3^4 - ... - 3^20
=> 8D = 3^22 - 9
=> D = 3^22 - 9 / 8
=> 2[3^2 + 3^4 + ... + 3^20] = 3^22 - 9 / 8 * 2 = 3^22 - 9 / 4
=> A = 3^23 - 3 / 4 - 3^22 - 9 / 4 - 1
\(\Rightarrow A=\frac{3^{23}-3-3^{22}-9}{4}-1=\frac{3^{22}\left[3-1\right]-12}{4}=\frac{3^{22}\cdot2-12}{4}\)
\(=\frac{6\left[3^{21}-2\right]}{4}=\frac{3\left[3^{21}-2\right]}{2}=5230176601\)
Mình chỉ biết làm thế thôi, sai thì mong mn sửa lại giúp nhé
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)