Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{19.20}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{5}-\frac{1}{20}\)
\(=\frac{4}{20}-\frac{1}{20}=\frac{3}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{49.50}\)
A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+ \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
A=1-\(\frac{1}{50}\)
A=\(\frac{49}{50}\)
C=\(\frac{7}{3.4}\)-\(\frac{9}{4.5}\)+\(\frac{11}{5.6}\)+\(\frac{13}{6.7}\)+\(\frac{15}{7.8}\)-\(\frac{17}{8.9}\)+\(\frac{19}{9.10}\)
=\(\frac{1}{3}\)+\(\frac{1}{4}\)-\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)+\(\frac{1}{6}\)-\(\frac{1}{6}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)+\(\frac{1}{8}\)-\(\frac{1}{8}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)+\(\frac{1}{10}\)
=\(\frac{1}{3}\)+\(\frac{1}{10}\)=\(\frac{13}{30}\)
\(A=\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}+...+\frac{4}{47.48}\)
\(A=4.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+......+\frac{1}{47.48}\right)\)
\(A=4.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{47}-\frac{1}{48}\right)\)
\(A=4.\left(\frac{1}{4}-\frac{1}{48}\right)\)
\(A=4.\frac{11}{48}\)
\(A=\frac{11}{12}\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50
= 49/50
ỦNG HỘ NHA
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
bài A: áp dụng công thức: 1 + 2 + 3 + ... + n = n x (n + 1) : 2 tính được 5050
bài B: áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rồi triệt tiêu gần hết, qui đồng mẫu số tính được B = 99/100
A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100
= ( 100 + 1 ) x 100 : 2 = 5050
Vậy A = 5050
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
Học tốt #