K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

bài A: áp dụng công thức: 1 + 2 + 3 + ... + n = n x (n + 1) : 2 tính được 5050

bài B: áp dụng công thức:  \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)  rồi triệt tiêu gần hết, qui đồng mẫu số tính được B = 99/100

17 tháng 7 2018

A = 1 + 2 + 3 + 4 + 5 + ... + 99 + 100

    = ( 100 + 1 ) x 100 : 2 = 5050

Vậy A = 5050

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

   \(=1-\frac{1}{100}\)

   \(=\frac{99}{100}\)

Vậy \(B=\frac{99}{100}\) 

Học tốt #

15 tháng 9 2015

mk bít lm cách lớp 5, vừa học

Cần ko bn

31 tháng 5 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

 = \(1-\frac{1}{100}\)

\(=\frac{99}{100}\)

25 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

thấy đúng thì k cho mk nha mấy bạn

8 tháng 8 2015

=1-1/2+1/2-1/3+....+1/99-1/100

=1-1/00

=99/100

Tick

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{99}{100}\)

16 tháng 4 2017

anh chiu

16 tháng 4 2017

chán thế

30 tháng 5 2015

Vì 2-1=1; 3-2=1; 4-3=1; ...

\(\Rightarrow=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow=\frac{1}{1}-\frac{1}{100}\)

\(\Rightarrow=\frac{99}{100}\)

1 tháng 3 2017

99/100 nha ban

chuc ban hoc gioi

17 tháng 11 2014

Áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

VT=\(x-\left(\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{99}-\frac{1}{100}\right)\right)\)

=\(x-\frac{1}{100}\)

Dễ dàng tìm được 

\(x-\frac{1}{100}=\frac{1}{100}\) 

\(x=\frac{1}{50}\)

17 tháng 7 2018

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(\left(1-\frac{1}{10}\right).100-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

\(\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)

\(\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\Rightarrow x+\frac{266}{100}=5\Rightarrow x=\frac{117}{50}\)

Vậy x = 117/50

17 tháng 7 2018

Ta có:

 \(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right).100\\ =\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).100\)

   \(=\left(1-\frac{1}{10}\right).100\)    

   \(=\frac{9}{10}.100\)

   = 90

Khi đó đề bài sẽ thành : \(90-\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=89\)

                                \(\Rightarrow\left[\frac{5}{2}:\left(x+\frac{266}{100}\right)\right]:\frac{1}{2}=1\)

                                \(\Rightarrow\frac{5}{2}:\left(x+\frac{266}{100}\right)=\frac{1}{2}\)

                                \(\Rightarrow x+\frac{266}{100}=5\)

                               \(\Rightarrow x=\frac{117}{50}\)

Vậy \(x=\frac{117}{50}\)

16 tháng 7 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

16 tháng 7 2016

A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{49.50}\)

A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+  \(\frac{1}{3}\) -    \(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

A=1-\(\frac{1}{50}\)

A=\(\frac{49}{50}\)

tính hộ mình nha

11 tháng 8 2016

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{15.16}\)

\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right).\frac{1}{x}=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{15.16}\right)\)

\(\frac{8+4+2+1}{16}.\frac{1}{x}=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(\frac{15}{16}.\frac{1}{x}=3.\left(1-\frac{1}{16}\right)\)

\(\frac{15}{16}.\frac{1}{x}=3.\frac{15}{16}\)

=> \(\frac{1}{x}=3\)

=> \(x=\frac{1}{3}\)