K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

\(B1,1,S_{3n}+3S_n=\left(2-\sqrt{3}\right)^{3n}+\left(2+\sqrt{3}\right)^{3n}+3\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)

         \(=\left[\left(2-\sqrt{3}\right)^n\right]^3+\left[\left(2+\sqrt{3}\right)^n\right]^3\)

                         \(+3\left[\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\right]^n\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]\)

Ta có hằng đẳng thức \(a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)

Ở đây với \(a=\left(2-\sqrt{3}\right)^n\)và \(b=\left(2+\sqrt{3}\right)^n\)

Nên \(S_{3n}+3S_n=\left[\left(2-\sqrt{3}\right)^n+\left(2+\sqrt{3}\right)^n\right]^3=S_n^3\)

\(2,S_3=\left(2-\sqrt{3}\right)^3+\left(2+\sqrt{3}\right)^3\)

         \(=\left(2-\sqrt{3}+2+\sqrt{3}\right)\left(2-\sqrt{3}-\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)+2+\sqrt{3}\right)\)

        \(=4\left[4-\left(4-3\right)\right]\)

         \(=12\)

Ta có \(S_4=\left(2-\sqrt{3}\right)^4+\left(2+\sqrt{3}\right)^4\)

              \(=\left[\left(2-\sqrt{3}\right)^2\right]^2+\left[\left(2+\sqrt{3}\right)^2\right]^2\)

              \(=\left(7-4\sqrt{3}\right)^2+\left(7+4\sqrt{3}\right)^2\)

              \(=97-56\sqrt{3}+97+56\sqrt{3}\)

              \(=194\)

20 tháng 6 2019

\(B2,F=x^4+6x^3+13x^2+12x+12\)(Bài này cẩn thận dấu "=")

            \(=\left(x^4+6x^3+9x^2\right)+4x^2+12x+12\)

            \(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)

             \(=\left(x^2+3x+2\right)^2+8\ge8\)

Dấu "=" tại \(x^2+3x+2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

17 tháng 7 2021

a) \(u_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n^2+2n+1}{\left[n\left(n+1\right)\right]^2}}=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{\left[n\left(n+1\right)\right]^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}\in Q\)

b) \(u_n=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Vậy \(S_{2021}=u_1+u_2+...+u_{2021}=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2021}-\frac{1}{2022}\)

\(=2022-\frac{1}{2022}=\frac{2022^2-1}{2022}\)