Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
\(\Delta=(m-3)^2+4(2m+1)=m^2+2m+13=(m+1)^2+12>0, \forall m\in\mathbb{R}\)
Do đó PT luôn có 2 nghiệm phân biệt với mọi $m$
Áp đụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=3-m\\ x_1x_2=-2m-1\end{matrix}\right.\)
Khi đó:
\(A=4x_1^2-x_1^2x_2^2+4x_2^2+x_1x_2\)
\(=4(x_1^2+x_2^2+2x_1x_2)-(x_1x_2)^2-7x_1x_2\)
\(=4(x_1+x_2)^2-(x_1x_2)^2-7x_1x_2\)
\(=4(3-m)^2-(-2m-1)^2-7(-2m-1)\)
\(=42-14m\)
Bạn muốn chứng minh biểu thức A thế nào???
a/ x3 - 5x2 +3x+1 = 0
<=> (x3 - x2) + ( - 4x2 + 4x) + ( - x + 1) = 0
<=> (x - 1)(x2 - 4x - 1) = 0
<=> x = 1 hoặc x = 2 + \(\sqrt{5}\)hoặc x = 2 - \(\sqrt{5}\)
Hiển nhiên quá nhỉ
\(x_1;x_2\)là hai nghiệm của phương trình suy ra \(\hept{\begin{cases}x_1^2-3x_1+1=0\\x_2^2-3x_2+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x_1^2=3x_1-1\\x_2^2=3x_2-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^{n+2}=3x_1^{n+1}-x_1^n\\x_2^{n+2}=3x_2^{n+1}-x_2^n\end{cases}}\)
Cộng theo từng vế của hai phương trình trên ta được: \(A_{n+2}=3A_{n+1}-A_n\)(Đpcm)