Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng công thức :SỐ SỐ HẠNG =(SỐ CUỐI- SỐ ĐẦU):KHOẢNG CÁCH GIỮA HAI SỐ+1
sau đó tính tổng:TỔNG =(SỐ ĐẦU + SỐ CUỐI).SỐ SỐ HẠNG:2
dấu chấm là dấu nhân nha bạn
đợi xíu mk giải cho
Ta có: 1 + 4 + 9 + 16 + 25 + ... + 10000
= 1 + 22 + 32 + 42 + 52 + ... + 1002
= 1.1 + 2.2. + 3.3 + 4.4 + 5.5 + ... + 100.100
= 1(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 100(101 - 1)
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + ... + 100.101 - 100
= (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3 + 4 + ... + 100)
Ta có: 3(1.2 + 2.3 + 3.4 + ... + 100.101) = 1.2.3 + 2.3.3 + 3.3.4 + ... + 3.100.101
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
= 1.2.3 - 1.2.0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 100.101.102 - 100.101.99
= 100.101.102
\(\Rightarrow\) 1.2 + 2.3 + 3.4 + ... + 100.101 = 100.101.34 = 343400
Ta có: 1 + 2 + 3 + 4 + ... + 100 = (100 + 1).100 : 2 = 5050
\(\Rightarrow\) (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3 + 4 + ... + 100) = 343400 - 5050 = 338350
Vậy 1 + 4 + 9 + 16 + 25 + ... + 10000 = 338350
Chúc bn học tốt!
số phần tử là:
(10000-1):3+1=3334
số số hạng là:
(10000+1).3334:2=16671667
Ta có : \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{15}+...+\frac{1}{10000}\right)\)
\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99\)
\(\Rightarrow\)S<99 (1)
Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)S>99-1=98 (2)
Từ (1) và (2)
\(\Rightarrow\)98<S<99
\(\Rightarrow\)S\(\notin\)N
Vậy S\(\notin\)N.
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
Câu trả lời nè bạn:
385
Bạn ơi số cuối cùng của dãy số là 10000 chứ ko phải là 100 bạn nhé