K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

\(S=1^2-2^2+3^2-4^2+...+2011^2-2012^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2011^2-2012^2\right)\)

\(=-3-7-...-4023\)

\(=-\frac{1006.4026}{2}=-2025078\)

21 tháng 1 2017

Ê cái bài cấp số cộng t làm rồi mà còn chưa cảm ơn đó nhá

NV
1 tháng 5 2020

\(\lim\limits\frac{3^n+4^n+3}{4^n+2^n-1}=\lim\limits\frac{\left(\frac{3}{4}\right)^n+1+3\left(\frac{1}{4}\right)^n}{1+\left(\frac{2}{4}\right)^n-\left(\frac{1}{4}\right)^n}=\frac{0+1+0}{1+0+0}=1\)

\(\lim\limits\frac{5.2^n+9.3^n}{2.2^n+3.3^n}=\lim\limits\frac{5\left(\frac{2}{3}\right)^n+9}{2.\left(\frac{2}{3}\right)^n+3}=\frac{0+9}{0+3}=3\)

\(\lim\limits\frac{4^n-7^n}{2^n+15^n}=\lim\limits\frac{\left(\frac{4}{15}\right)^n-\left(\frac{7}{15}\right)^n}{\left(\frac{2}{15}\right)^n+1}=\frac{0-0}{0+1}=0\)

\(\lim\limits\frac{6.5^n+9^n}{3.12^n+7^n}=\lim\limits\frac{6\left(\frac{5}{12}\right)^n+\left(\frac{9}{12}\right)^n}{3+\left(\frac{7}{12}\right)^n}=\frac{0+0}{3+0}=0\)

\(\lim\limits\frac{\sqrt{5}^n}{3^n+1}=\lim\limits\frac{\left(\frac{\sqrt{5}}{3}\right)^n}{1+\left(\frac{1}{3}\right)^n}=\frac{0}{1+0}=0\)

\(\lim\limits\frac{5.5^n-3.7^n}{3.10^n+36.6^n}=\lim\limits\frac{5.\left(\frac{5}{10}\right)^n-3\left(\frac{7}{10}\right)^n}{3+36\left(\frac{6}{10}\right)^n}=\frac{0-0}{3+0}=0\)

NV
9 tháng 7 2020

Tổng cách hệ số của đa thức chính là \(f\left(1\right)\)

\(=\left(1+1-2\right)^{2010}+\left(1-1+1\right)^{2011}=1\)

22 tháng 1 2020

Bài 1. Ta có:

\(\begin{array}{l} S = \sum\limits_{k = 1}^n {{x^{2k}}} + \sum\limits_{k = 1}^n {\dfrac{1}{{{x^{2k}}}} + 2n} \\ = {x^2}\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}} + \dfrac{1}{{{x^2}}}.\dfrac{{1 - \dfrac{1}{{{x^{2n}}}}}}{{1 - \dfrac{1}{{{x^2}}}}} + 2n\\ = \dfrac{{\left( {1 - {x^{2n}}} \right)\left( {{x^{2n + 2}} - 1} \right)}}{{\left( {1 - {x^2}} \right){x^{2n}}}} + 2n \end{array}\)

Bài 2.

Ta có:

\(\begin{array}{l} T = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + ... + \dfrac{{2n - 1}}{{{2^n}}}\left( 1 \right)\\ \dfrac{1}{2}T = \dfrac{1}{{{2^2}}} + \dfrac{3}{{{2^3}}} + \dfrac{5}{{{2^4}}} + ... + \dfrac{{2n - 3}}{{{2^n}}} + \dfrac{{2n - 1}}{{{2^{n + 1}}}}\left( 2 \right) \end{array}\)

\((1)-(2)\)\(\Rightarrow \dfrac{1}{2}T = \dfrac{1}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + ... + \dfrac{2}{{{2^n}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}\)

\(\begin{array}{l} \Rightarrow T = 2\left[ {\dfrac{1}{2} + \dfrac{1}{2}\dfrac{{1 - {{\left( {\dfrac{1}{2}} \right)}^{n - 1}}}}{{1 - \dfrac{1}{2}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}} \right]\\ = 1 + \dfrac{{{2^{n - 1}} - 1}}{{{2^{n - 2}}}} - \dfrac{{2n - 1}}{{{2^n}}} \end{array}\)

NV
20 tháng 11 2019

\(S=x^2+\frac{1}{x^2}+2+x^4+\frac{1}{x^4}+2+...+x^{2n}+\frac{1}{x^{2n}}+2\)

\(=\left(x^2+x^4+...+x^{2n}\right)+\left(\frac{1}{x^2}+\frac{1}{x^4}+...+\frac{1}{x^{2n}}\right)+2n\)

\(=x^2.\frac{\left(x^2\right)^{n-1}-1}{x^2-1}+\frac{1}{x^2}.\frac{\left(\frac{1}{x^2}\right)^{n-1}-1}{\frac{1}{x^2}-1}+2n\)

\(=\frac{x^{2n}-x^2}{x^2-1}+\frac{x^{2-2n}-1}{1-x^2}+2n\)

\(T=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+\frac{2n-3}{2^{n-1}}+\frac{2n-1}{2^n}\)

\(\Rightarrow2T=1+\frac{3}{2}+\frac{5}{2^2}+...+\frac{2n-1}{2^{n-1}}\)

\(\Rightarrow T=1+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{n-1}}-\frac{2n-1}{2^n}\)

\(T=1+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-2}}-\frac{2n-1}{2^n}\)

\(T=1+1.\frac{\left(\frac{1}{2}\right)^{n-2}-1}{\frac{1}{2}-1}-\frac{2n-1}{2^n}=3-\frac{1}{2^{n-1}}-\frac{2n-1}{2^n}=3-\frac{1}{2^n}-\frac{n}{2^{n-1}}\)

NV
11 tháng 4 2019

Giải ko cần sử dụng nhị thức Newton:

\(S=5+2.5^2+3.5^3+...+49.5^{49}+50.5^{50}\)

\(\Rightarrow5S=5^2+2.5^3+3.5^4+...+49.5^{50}+50.5^{51}\)

Trừ dưới cho trên:

\(4S=-5-5^2-5^3-5^4-...-5^{50}+50.5^{51}\)

\(\Rightarrow4S=5.5^{51}-\left(5+5^2+...+5^{50}\right)\)

Chú ý rằng trong ngoặc là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=5\\q=5\end{matrix}\right.\)

\(\Rightarrow4S=5.5^{51}-\frac{5^{51}-5}{4}=\frac{19}{4}.5^{51}+\frac{5}{4}\)

\(\Rightarrow S=\frac{19.5^{51}+5}{16}\)

12 tháng 4 2019

E cảm ơn ạ !

NV
28 tháng 2 2020

Do quá làm biếng dùng Hoocne tách nhân tử nên chúng ta sẽ sử dụng L'Hopital:

\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)

\(\lim\limits_{x\rightarrow-3}\frac{x^4-6x^2-27}{x^3+3x^2+x+3}=\lim\limits_{x\rightarrow-3}\frac{4x^3-12x}{3x^2+6x+1}=\frac{-36}{5}\)

\(\lim\limits_{x\rightarrow-2}\frac{2x^3+x^2+12}{-x^2-6x-8}=\lim\limits_{x\rightarrow-2}\frac{6x^2+2x}{-2x-6}=-10\)

\(\lim\limits_{x\rightarrow-2}\frac{-2x^3+x-14}{-2x^3-x^2-12}=\lim\limits_{x\rightarrow-2}\frac{-6x^2+1}{-6x^2-2x}=\frac{23}{20}\)

Con cuối ko phải tích phân dạng vô định \(\frac{0}{0}\) bạn cứ thế thẳng -2 vào là được

17 tháng 2 2017

Khác gì lớp 6 đâu đăng nhầm lớp hả:

\(S=\frac{1}{7^2}\left(1^2+2^2+3^2+...+10^2\right)=\frac{1}{7^2}.385=\frac{7.11.5}{7.7}=\frac{11.5}{7}\)

1 tháng 8 2018

1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)

\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)

2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)

\(\Leftrightarrow sinx=1\)

3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)

\(\Leftrightarrow3cos2x-4sin2x=-4\)

\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)

\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)

4,5 giải tương tự câu 3