Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}.................-\frac{1}{100}+1=1-\frac{1}{100}+1=2-\frac{1}{100}=\frac{199}{100}\)
1x2/1+2 + ... + 1x2x ... x 999x1000/1+2+ ... +1000
= 1 + ... + 1
= 1 x 1000
= 1000
Suy ra 2A=2/1x2x3+2/2x3x4+2/3x4x5+......+2/38x39x40
2A=3-1/1x2x3+4-2/2x3x4+5-3/3x4x5+........+40-38/38x39x40
2A=1/1x2-1/2x3+1/2x3-1/3x4+1/4x5-1/5x6+........+1/38x39-1/39x40
2A=1/2-1/1560
2A=780/1560-1/1560
2A=779/1560
A=779/1560:2
A=779/1560x1/2
A=779/3120
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.......+\frac{1}{38.39.40}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.........+\frac{2}{38.39.40}\)
\(2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{40-38}{38.39.40}\)
\(2A=\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+.......+\frac{40}{38.39.40}-\frac{38}{38.39.40}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+.......+\frac{1}{38.39}-\frac{1}{39.40}\)
\(2A=\frac{1}{1.2}-\frac{1}{39.40}\)
\(2A=\frac{1}{2}-\frac{1}{1560}\)
\(2A=\frac{779}{1560}\)
\(A=\frac{779}{1560}:2\)
\(A=\frac{779}{3120}\)
=1/2 -1/3 +1/3-1/4+1/4-1/5+....+1/999-1/1000
=1/2-1/1000
=499/1000
=1/2-1/3+1/3-1/4+1/4-1/5+...+1/999-1/1000
=1/2-1/1000=499/1000
nha
\(\frac{1}{8}=12,5\%\) ; \(\frac{1}{16}=6,25\%\) ; \(\frac{1}{2}=50\%\) ; \(\frac{1}{4}=25\%\)
Thay vào trên mà tính.
= \(1+\left(\frac{3\left(1x2+2x4x2\right)}{3\left(5+5x3x25\right)}+1\right)-\left(1+\frac{18}{54}\right)-1\) = \(\frac{18}{380}-\frac{18}{54}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1999}{1000}\)
1,999 nhé bạn!