Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 1 + 51 + 52 +...+ 512 + 513
=> S = 1 + 5 + (52 + 53 + 54 ) + (55 + 56 + 57) + ...... + (511 + 512 + 513)
=> S = 6 + 52(1 + 5 + 25) + 55(1 + 5 + 25) + ..... + 511(1 + 5 + 25)
=> S = 6 + 52.31 + 55.31 + ..... + 511.31
=> S = 6 + (52.31 + 55.31 + ..... + 511.31)
=> S = 6 + 31(52 + 55 + ..... + 511)
Mà : 31(52 + 55 + ..... + 511) chia hết cho 31
Nên S = 6 + 31(52 + 55 + ..... + 511) chia 31 dư 6
5S= 5+52 +53 +....+ 513 + 514
4S=(5+52 +53 +....+ 513 + 514) - (1+ 5 + 52+53 +....+ 512 + 513 )
4S= 514 - 1
S= 514 - 1 :4 =6103515625 -\(\frac{1}{4}\)= 6103515624.75
S: 31 = 6103515624.75 : 31
────(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.
ADTC bấm máy tính ta có :
\(1+5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9=2441406\)
Ta lại có : \(2441046:13=78743.4193...\)
\(\Rightarrowđpcm\)( lm bừa )
1)
\(222^{333}\) và \(333^{222}\)
\(222^{333}=\left(222^3\right)^{111}=10941048^{111}\)
\(333^{222}=\left(333^2\right)^{111}=110889^{111}\)
vì \(10941048^{111}>110889^{111}\Rightarrow222^{333}>333^2\)
2)
\(1x8y2⋮36\Rightarrow1x8y2⋮4;1x8y2⋮9\)
\(1x8y2⋮4\Leftrightarrow y2⋮\Leftrightarrow y=\left\{1;5;9\right\}\)
-nếu\(y=1\Rightarrow1x812⋮9\Leftrightarrow\left(1+x+8+1+2\right)⋮9\Leftrightarrow12+x⋮9\Leftrightarrow x=6\)nếu \(y=5\Rightarrow1x852⋮9\Leftrightarrow\left(1+x+8+5+2\right)⋮9\Leftrightarrow16+x⋮9\Leftrightarrow x=2\)nếu \(y=9\Rightarrow1x892⋮9\Leftrightarrow\left(1+x+8+9+2\right)⋮9\Leftrightarrow20+x⋮9\Leftrightarrow x=7\)
5A=5+52+53+.....+513
5A—A=(5+52+53+...+514)—(1+5+52+...+513)
4A=514—1
A=(514—1):4
Đoạn này tự làm
A = 50 + 51 + 52 + 53 +...+5100 ( cs 101 so)
A = 50 +51 +( 52 + 53 + 54 )+( 55+56+57)+...+( 598 + 599 + 5100 )
A = 6+ 52.31 +55.31+...+598.31 chia 31 du 6
:)
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
A= 50+51+52+..........+52002
= 1+5+52+..........+ 52002
= 1+ (5+52+53)+.....+ ( 52000+52001+52002)
= 1+ 5( 1+5+52) + .....+52000( 1+5+52)
= 1+ (5+...+52000)( 1+5+52)
= 1+ (5+....+52000)31 chia 31 dư 1