K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

Ta có : A = 1 + 2 + 3 + ... + 2008

\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\) 

\(A=\frac{2009.2008}{2}\) 

\(A=2017036\) 

Ta có: B = 1 + 2 + 3 + ... + 1010

\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\) 

\(B=\frac{1011.1010}{2}\) 

\(B=510555\)

\(A=1+2+3+4+5+...+2008\)

\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)

\(=2009.1004=2017036\)

\(B=1+2+3+4+...+1010\)

\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)

\(=1011.505=510555\)

\(C=2+5+8+11+...+302\)

\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)

\(=15352\)

\(D=3+3^2+3^3+3^4+...+3^{2019}\)

\(3D=3^2+3^3+3^4+...+3^{2020}\)

\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)

\(2D=3^{2020}-3\)

\(\Rightarrow D=\frac{3^{2020}-3}{2}\)

\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)

\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)

\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)

\(3E=4^{101}-4^{10}\)

\(E=\frac{4^{101}-4^{10}}{3}\)

9 tháng 7 2018

a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

Vậy  \(A=2^{101}-1\)

b) Đặt \(B=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3B-B=2B=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{101}-1}{2}\)

Vậy  \(B=\frac{3^{101}-1}{2}\)

_Chúc bạn học tốt_

9 tháng 7 2018

Cảm ơn bạn nhé Nguyễn Thanh Hiền

8 tháng 12 2018

\(A=1+6+6^2+6^4+...+6^{100}\)

\(\Rightarrow6A=6+6^2+6^4+...+6^{100}+6^{101}\)

\(\Rightarrow6A-A=\left(6+6^2+6^4+....+6^{102}\right)-\left(1+6+6^2+6^4+...+6^{100}\right)\)

\(\Rightarrow5A=6^{101}-1\)

\(\Rightarrow A=\frac{6^{101}-1}{5}\)

8 tháng 12 2018

\(B=1+3^2+3^4+3^6+3^8+...+3^{100}.\)

\(\Rightarrow3B=3^2+3^4+3^6+...+3^{101}\)

\(\Rightarrow3B-B=\left(3^2+3^4+...+3^{101}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{101}-1}{2}\)