Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đây là lần đầu tiên bn gửi câu hỏi nên mk đã kiên nhẫn dịch cái đề và hi vọng nó đúng!
Ta có: \(\left(\sqrt{8+2\sqrt{7}}+2.\sqrt{8-2\sqrt{7}}\right).\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{7+2\sqrt{7}+1}+2.\sqrt{7-2\sqrt{7}+1}\right).\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{\left(\sqrt{7}+1\right)^2}+2.\sqrt{\left(\sqrt{7}-1\right)^2}\right)\left(\sqrt{63}+1\right)\)
\(=\left(\left|\sqrt{7}+1\right|+2.\left|\sqrt{7}-1\right|\right).\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{7}+1+2\sqrt{7}-2\right)\left(\sqrt{63}+1\right)\)
\(=\left(3\sqrt{7}-1\right)\left(\sqrt{63}+1\right)\)
\(=\left(\sqrt{63}-1\right)\left(\sqrt{63}+1\right)=63-1=62\)
\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=|\sqrt{5}-1|\)
= \(\sqrt{5}-1\)
27>25>0
→\(\sqrt{27}\)>\(\sqrt{25}\)
\(\sqrt{27}\)>5
6>4>0
\(\sqrt{6}\)>\(\sqrt{4}\)
\(\sqrt{6}\)>2
\(\sqrt{27}\)+\(\sqrt{6}\)>2+5→\(\sqrt{27}\)+\(\sqrt{6}\)>7
0<48<49→\(\sqrt{48}\)<\(\sqrt{49}\)→\(\sqrt{48}\)<7
Từ đó suy ra \(\sqrt{27}\)+\(\sqrt{6}\)>\(\sqrt{48}\)
Cái này là hệ số của hằng đẳng thức (a+b)^n
7 số hạng tiếp theo là hệ số của HĐT (a+b)^6
đó là 1 6 15 20 15 6 1
suy ra tổng =64
uk thank