K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{91}-\frac{1}{93}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{93}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{93}\right)\)

\(=\frac{1}{2}.\frac{92}{93}\)

\(=\frac{46}{93}\)

5 tháng 2 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{91.93}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{91}-\frac{1}{93}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{93}\right)\)

\(=\frac{1}{2}.\frac{92}{93}\)

\(=\frac{46}{93}\)

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

5 tháng 2 2017

bucminhzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

=> A=\(\frac{a+b+c}{b+c+a+c+a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)

=> A=\(\frac{1}{2}\)

5 tháng 2 2017

TH1:a+b+c=0

\(\)\(\Rightarrow\left\{\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

\(\Rightarrow A=\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=-1\)

TH2:\(a+b+c\ne0\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

A=\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Vậy A=-1 hoặc A=\(\frac{1}{2}\)

24 tháng 8 2017

Ta có: \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrow A:\left(\dfrac{1}{26}+\dfrac{1}{47}+...+\dfrac{1}{50}\right)=1\)

Vậy...

24 tháng 8 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\right):\left(\dfrac{1}{26}+\dfrac{1}{27}+...\dfrac{1}{50}\right)=1\)

Vậy...

5 tháng 2 2017

\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)

15 tháng 2 2017

Cô giải rồi lên đây giải làm j nữa.

17 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow\left\{\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)

Thay \(a=10k\)\(b=3k\) vào biểu thức \(A=\frac{3\cdot a-2\cdot b}{a-3\cdot b}\), ta được :

\(A=\frac{3\cdot10k-2\cdot3k}{10k-3\cdot3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

Vậy \(A=24\)

17 tháng 2 2017

Cảm ơn bạn nha!

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

14 tháng 2 2017

\(\frac{x}{2013}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)

\(\Leftrightarrow\frac{x}{2013}-\left(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\right)=\frac{5}{8}\)

\(\Leftrightarrow\frac{x}{2013}-\left[2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\right]=\frac{5}{8}\)

\(\Leftrightarrow\frac{x}{2013}-\left[2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\right]=\frac{5}{8}\)

\(\Leftrightarrow\frac{x}{2013}-2\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{5}{8}\)

\(\Leftrightarrow\frac{x}{2013}-\frac{3}{8}=\frac{5}{8}\)

\(\Rightarrow\frac{x}{2013}=\frac{5}{8}+\frac{3}{8}=1\Rightarrow x=2013\)

Vậy x = 2013

15 tháng 2 2017

Cảm ơn bạn nha!

11 tháng 2 2017

\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)

Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)

Vậy \(C=8\)

12 tháng 2 2017

Thank bạn nha ! hihi