K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

10 tháng 9 2017

a a' a//a' mk chưa chắc đã đúng :D

5 tháng 3 2017

Ta có:

(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)

\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)

Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2

\(\Rightarrow\)b=2.20=40

Vậy b=40

Học tốt!vui

5 tháng 3 2017

Ahihi em chịu ....!limdim

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

30 tháng 8 2017

>> Mình không chép lại đề bài nhé ! <<

Cách 1 :

\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)

Cách 2 :

\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)

\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)

30 tháng 8 2017

Cách 1 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)

\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)

\(=-\dfrac{5}{2}\)

Cách 2 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)

\(=\left(-2\right)+0+\dfrac{-1}{2}\)

\(=\dfrac{-5}{2}\)

25 tháng 7 2017

Hehehe!oaoa Dễ tek mà ko làm đc!bucqua

Nhớ mối thù năm xưa chứ e.eoeoleuleu

25 tháng 7 2017

sí sào, ai thèm mày giúp.

hiha

25 tháng 10 2017

b) Vì 50 > 49 nên \(\sqrt{50}\) > \(\sqrt{49}\) = 7

Vì 2 > 1 nên \(\sqrt{2}\) > \(\sqrt{1}\) = 1

\(\Rightarrow\) \(\sqrt{50}\) + \(\sqrt{2}\) > 7 + 1 = 8 (1)

Ta nhận thấy: 50 + 2 = 52 < 64. \(\Rightarrow\) \(\sqrt{50+2}\) < \(\sqrt{64}\) = 8 (2)

Từ (1) và (2) suy ra ​​​\(\sqrt{50}\) + \(\sqrt{2}\) > \(\sqrt{50+2}\)

Vậy,...

25 tháng 10 2017

OK, tôi sẽ giúp bn.

a) Vì 26 > 25 nên \(\sqrt{26}\) > \(\sqrt{25}\) = 5

Vì 17 > 16 nên \(\sqrt{17}\) > \(\sqrt{16}\) = 4

\(\Rightarrow\) \(\sqrt{26}\) + \(\sqrt{17}\) > 5 + 4 = 9

Vậy, \(\sqrt{26}\) + \(\sqrt{17}\) > 9

19 tháng 3 2017

Ta có:\(2009^{20}=\left(2009^2\right)^{10}=4036081^{10}< 20092009^{10}\)

Vậy \(2009^{20}< 20092009^{10}\)

25 tháng 7 2017

Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!

Bạn xem lại đề!:)

25 tháng 7 2017

Đúng đó