\(E=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}....\frac{30}{62}.\frac{31}{64}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

\(E=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}=\frac{1\cdot1\cdot1\cdot1\cdot.....\cdot1\cdot1}{2\cdot2\cdot2\cdot....\cdot2\cdot64}=\frac{1}{2\cdot30\cdot64}=\frac{1}{3840}\)

4 tháng 7 2015

\(\frac{1.2.3.4....30.31}{2.2.2.3.2.3.....2.32}=\frac{2.3.4....30.31}{2^{31}\left(2.3...31\right).32}=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^{-36}\)

Vậy x=-36

13 tháng 8 2017

ta có \(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}.....\frac{30}{62}\cdot\frac{31}{64}=2^x\)

=>\(\frac{1.2.3.4....31}{2\cdot2\cdot2\cdot3\cdot2\cdot3.....\cdot2\cdot3\cdot2}=\frac{2\cdot3\cdot4...30.31}{2^{31}\left(2\cdot3\cdot4...31\right)32}=\frac{1}{2^{31}\cdot2^5}=\frac{1}{2^{36}}=2^{-36}\)

\(=>x=-36\)

18 tháng 7 2017

\(=\frac{1x2x3x...x30x31}{2^{31}x\left(2x3x4x...x31x32\right)}=\frac{1}{2^{31}x32}=\frac{1}{2^{36}}\)

20 tháng 5 2018

a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)

Do đó \(x\in\left\{0;1;2\right\}\)

25 tháng 7 2018

b)

\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)

\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

24 tháng 4 2018

1/4 . 2/6 . 3/8 . ... .30/62 .31/64 = 2^x

(1/2 . 1/2).(2/3 . 1/2).(3/4 . 1/2). ... .(30/31 . 1/2).(31/32 . 1/2) = 2^x

(1/2.1/2. ... .1/2).(1/2 . 2/3 . 3/4. ... .30/31 . 31/32) = 2^x

   (31 số 1/2) 

(1/2)^31. \frac{1.2.3. ... .30.31}{2.3.4. ... .31.32} = 2^x

\frac{1^{31}}{2^{31}}.\frac{1}{32}=2^{x}

\frac{1}{2^{31}}.\frac{1}{2^{5}}=2^{x}

\frac{1.1}{2^{31}.2^{5}}=2^{x}

\frac{1}{2^{36}}=2^{x}

1=2^{x}.2^{36}

2^{0}=2^{x+36}

=> 0=x+36

      x=0-36

      x=-36

Vậy x=-36

Theo mk nghĩ,mk làm đúng nha .Tk cho mk

25 tháng 4 2018

Để mk sửa phần này một chút

\((\frac{1}{2})^{31}\cdot\frac{1\cdot2\cdot3.....30\cdot31}{2\cdot3\cdot4.....31\cdot32}=2^x\)

\(\frac{1^{31}}{2^{31}}\cdot\frac{1}{32}=2^x\)

\(\frac{1}{2^{31}}\cdot\frac{1}{2^5}=2^x\)

\(\frac{1}{2^{36}}=2^x\)

\(1=2^x\cdot2^{36}\)

\(2^0=2^x+36\)

Rồi bn tự suy luận nha

5 tháng 7 2018

a) x=7 và 8

b) x+1 và 2

c) 1/4

Quên rùi!!!

\(P=...\)

\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-...-\frac{1}{2}+1\)

\(=\frac{1}{99}-1=\frac{-98}{99}\)

\(M=...\)

\(=\frac{2}{2}+\frac{1}{2}+\frac{4}{4}+\frac{1}{4}+...+\frac{64}{64}+\frac{1}{64}-7\)

\(=1+1+1+1+1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-7\)

\(=\frac{1+2+2^2+2^3+2^4+2^5}{2^6}-1\)

\(=\frac{2^6-1}{2^6}-1=1-\frac{1}{2^6}-1=-\frac{1}{2^6}\)

7 tháng 9 2017

\(\frac{4}{1}.\frac{6}{2}.\frac{8}{3}.\frac{10}{4}...\frac{64}{31}=\frac{2^{31}.\left(2.3.4.5...32\right)}{1.2.3.4...31}=2^{31}.32\)

Mà \(2^x=2^{31}.32=2^{31}.2^5=2^{36}\)

\(\Rightarrow x=36\)

8 tháng 7 2016

a) \(14:\frac{0,4x+0,6}{x}=7\)

\(\frac{0,4x+0,6}{x}=2\)

0,4x + 0,6 = 2.x

2x - 0,4x = 0,6

1,6x = 0,6

x = 0,375

b) \(\left(160\%+\frac{2}{3}x-x\right).12=660\)

\(\left(160\%+\frac{2}{3}x-x\right)=55\)

\(x\left(\frac{2}{3}-1\right)=53,4\)

\(-\frac{1}{3}x=\frac{267}{5}\)

\(x=\frac{267}{5}.\frac{3}{-1}\)

\(x=-160,2\)

c) \(1:\frac{1.2.3.4.....31}{2.2.2.3.2.4.....2.32}=2^x\)

\(1:\frac{1.2.3.4.....31}{2^{31}.2.3.4.....31.2^5}=2^x\)

\(1:\frac{1}{2^{36}}=2^x\)

\(2^{36}=2^x\)

\(x=36\)