Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(P=\frac{1}{2}\left(5^{32}+1\right)\)
Đặt \(A=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(\Rightarrow2A=24.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^2-1\right).\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^4-1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^8-1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}-1\right).\left(5^{16}+1\right)\)
\(2A=\left(5^{16}\right)^2-1^2\)
\(2A=5^{32}-1\)
\(\Rightarrow A=\frac{5^{32}-1}{2}.\)
3. ( 22 + 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 22 - 1 ).( 22 + 1 ).( 24 + 1 ).( 28 + 1 )....( 264 + 1 ) + 1
= ( 24 - 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 28 + 1 ).....( 264 + 1 ) + 1
= ( 264 - 1 ).( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
8.( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 34 - 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 38 - 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 316 - 1 )......( 3128 + 1 ) + 1
= ( 3128 - 1 ).( 3128 + 1 ) + 1
= 3256 - 1 + 1
= 3256
nghe nhe',bai nay de thui ma.
ta xet ve trai a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1)
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b)
thay vao(2) ta dc
=3abc
vay la xong
ket luan ve trai bang ve phai
k cho mk nha
\(p=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(p=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(p=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(p=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(p=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(p=\frac{1}{2}\left(5^{32}-1\right)=\frac{5^{32}-1}{2}\)
Bài làm :
Ta có:
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(P=\frac{24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(P=\frac{5^{32}-1}{2}\)
\(\text{Vậy : }P=\frac{5^{32}-1}{2}\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài làm:
Đặt \(A=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
=> \(2A=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
<=> \(2A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
<=> \(2A=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
<=> \(2A=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
<=> \(2A=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
<=> \(2A=5^{32}-1\)
=> \(A=\frac{5^{32}-1}{2}\)