K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 1 2019

Đặt \(2016=a\) biểu thức trên trở thành:

\(P=\dfrac{\left(a^2\left(a+10\right)+31\left(a+1\right)-1\right)\left(a\left(a+5\right)+4\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)}=\dfrac{A}{B}\)

Với \(B=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\)

Ta có: \(a^2\left(a+10\right)+31\left(a+1\right)-1=a^3+10a^2+31a+30\)

\(=a^3+5a^2+6a+5a^2+25a+30=a\left(a^2+5a+6\right)+5\left(a^2+5a+6\right)\)

\(=\left(a+5\right)\left(a^2+5a+6\right)=\left(a+5\right)\left(a^2+2a+3a+6\right)\)

\(=\left(a+5\right)\left(a+2\right)\left(a+3\right)\)

\(a\left(a+5\right)+4=a^2+5a+4=a^2+a+4a+4=\left(a+1\right)\left(a+4\right)\)

\(\Rightarrow A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)=B\)

\(\Rightarrow P=\dfrac{A}{B}=1\)

10 tháng 2 2018

cái gì đấy

19 tháng 7 2016

Bài 1:

F=(x-1)3-x2(x-3)

=x3-3x2+3x-1-x3-3x2

=(x3-x3)-(3x2-3x2)+3x-1

=3x-1

Bài 2:

a)(x+3)2=(x-2)(x+4)

<=>x2+6x+9=x2+2x-8

<=>4x=-17

<=>x=-17/4

b)(x+4)2=2x2+16

<=>x2+8x+16=2x2+16

<=>8x=x2

<=>8x-x2=0

<=>x(8-x)=0

<=>x=0 hoặc x=8

19 tháng 7 2016

Bài 1:

F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1

Bài 2:

a, <=>(x+3)2-(x-2)(x-4)=0

    <=>x^2+6x+9-x^2-4x+2x+8=0

    <=>4x+17=0

    <=>x=-4,25

 b,<=>(x+4)2-2x2-16=0

    <=>x2+8x+16-2x2-16=0

    <=>8x-x2=0

   <=>x(8-x)=0

   <=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)

Bài 3:(đợi một xíu)

11 tháng 3 2017

bài này tui cũng đang cần

11 tháng 3 2017

hey, do you come from England

2 tháng 11 2016

Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017

3 tháng 11 2016

Xét:

1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài

2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm 

3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm

Vậy phương trình có 2 nghiệm là ..................

1 tháng 7 2017

\(\left(\dfrac{1}{3}\right)^{2017}\cdot3^{2016}\cdot21=\dfrac{1}{3^{2017}}\cdot3^{2016}\cdot21=\dfrac{3^{2016}}{3^{2017}}\cdot21=\dfrac{1}{3}\cdot21=7\)