Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 1.2.3.....99/2.3.4....100
=1/100
k mk nha đáp án đúng đó
\(\frac{-3}{4}.\frac{2}{11}+\frac{3}{4}.\frac{9}{11}+2\frac{3}{4}\)
\(=\frac{3}{4}.\frac{-2}{11}+\frac{3}{4}.\frac{9}{11}+\frac{3}{4}+2\)
\(=\frac{3}{4}\left(-\frac{2}{11}+\frac{9}{11}+1\right)+2\)
\(=\frac{3}{4}.\frac{18}{11}+2\)
\(=\frac{27}{22}+2\)
\(=\frac{71}{22}\)
Study well ! >_<
A=\(\frac{3.3}{8.11}\)+\(\frac{3.3}{11.14}\)+\(\frac{3.3}{14.17}\)+........+\(\frac{3.3}{197.200}\)
A=3\(\frac{3}{8.11}\)+3\(\frac{3}{11.14}\)+3\(\frac{3}{14.17}\)+............+3\(\frac{3}{197.200}\)
A=3.(\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+..............+\(\frac{3}{197.200}\))
A=3.(\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+\(\frac{1}{14}\)-\(\frac{1}{17}\)+.........+\(\frac{1}{197}\)-\(\frac{1}{200}\))
A=3.(\(\frac{1}{8}\)-\(\frac{1}{200}\))
A=3.(\(\frac{50}{400}\)-\(\frac{2}{200}\))
A=3.\(\frac{48}{400}\)
A=3.\(\frac{3}{25}\)
A=\(\frac{9}{25}\)
b,\(-\frac{5}{7}.\frac{4}{13}+-\frac{5}{7}.\frac{9}{13}+-\frac{2}{7}\)
\(=-\frac{5}{7}.\left(\frac{4}{13}+\frac{9}{13}\right)+-\frac{2}{7}\)
\(=-\frac{5}{7}+-\frac{2}{7}=-1\)
học tốt nha e!
a, \(\frac{2}{3}+\left(\frac{3}{11}+-\frac{2}{5}\right)+-\frac{2}{5}\)
\(=\frac{2}{3}+(-\frac{22}{55}+-\frac{2}{5})\)
\(=\frac{2}{3}+-\frac{44}{115}=....??\)
\(\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\)
\(=\frac{2\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}{4\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(=\frac{3}{200}:\frac{3}{5}+\frac{3}{2}\left(\frac{4}{25}-\frac{2}{5}\right)-\frac{1}{25}.\left(\frac{7}{4}:\frac{7}{5}-\frac{5}{2}\right)\)
\(=\frac{3.5}{200.3}+\frac{3}{2}\left(\frac{4}{25}-\frac{2.5}{25}\right)-\frac{1}{25}\left(\frac{7.5}{4.7}-\frac{5}{2}\right)\)
\(=\frac{1}{40}+\frac{3}{2}\left(\frac{-6}{25}\right)-\frac{1}{25}\left(\frac{5}{4}-\frac{10}{4}\right)\)
\(=\frac{1}{40}-\frac{9}{25}+\frac{1}{20}\)
\(=\frac{1.5}{40.5}-\frac{9.8}{25.8}+\frac{1.10}{20.10}\)
\(=\frac{5-72+10}{200}=\frac{-57}{200}\)
S=3/2^0+3/2^1+....+3/2^2018
S=3/2.(2/2^0+2/2^1+....+2^2018)
đặt B=2/2^0+2/2^1+....+2^2018
2B=2.(2/2^0+2/2^1+....+2^2018)
2B=1+2/2^0+...+2/2^2017
2B-B=(1+2/2^0+...+2/2^2017)-(2/2^0+2/2^1+....+2^2018)
B=1-2^2018
S=3/2.1-2^2018=3/2^2018
\(A=3\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+.....+\frac{3}{55\cdot58}\right)\)
\(A=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{55}-\frac{1}{58}\right)\)
\(A=3\left(1-\frac{1}{58}\right)\)
\(A=3-\frac{1}{174}< 3< \frac{10}{3}\)
S = \(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
2A = \(2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
= \(2+1+\frac{1}{2}+....+\frac{1}{2^8}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(A=2-\frac{1}{2^9}\)
\(\Rightarrow S=3\left(2-\frac{1}{2^9}\right)=\frac{3.\left(2^{10}-1\right)}{2^9}\)