Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 + 2.3(4 - 1) + 3.4(5 - 2) + ......... + 99.100(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ........ + 99.100.101 - 98.99.100
=> 3S = (1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101) - (1.2.3 + 2.3.4 + .......... + 98.99.100)
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
a) \(VP=\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
VT=VP=>đpcm
b)áp dụng a)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
Vậy A=99/100
b) A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
=9,9
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100)
=1-1/2+1/2-1-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
tôi không chép bài giang ho đai ca đâu nha.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
vì \(\frac{99}{100}< 1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}< 1\)
Vậy A<1
1/1.2 + 1/2.3 + .................+ 1/99.100 =
1/1 - 1/2 + 1/2 - 1/3 +....................+ 1/99 - 1/100 =
1/1 - 1/100 = 99/100
A=1-1/2+1/2-1/3+1/3-1/4+..........................+1/99-1/100
A=1-1/100
A=99/100
like di hehehehehehehehehe
1/1.2+1/2.3+1/3.4+....+1/99.100
=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100
=1/1-1/100
=99/100
\(\frac{3}{4}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)
\(=\frac{3}{4}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{3}{4}+1-\frac{1}{100}=\frac{87}{50}\)
A=1-1/2+1/2-1/3+1/3-1/4+.........+1/99-1/100
A=1-1/100
A=99/100
ai k mk mk k lai
A=1-1/100
A=99/100
Nha bạn