Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
a: A=3^2(1^2+2^2+...+10^2)
=9*385
=3465
b: B=2^3(1^3+2^3+...+10^3)
=8*3025
=24200
\(P=3^2+6^2+9^2+...+30^2\)
\(=\left(1.3\right)^2+\left(2.3\right)^2+\left(3.3\right)^2+...+\left(10.3\right)^2\)
\(=\left(1^2+2^2+3^2+...+10^2\right).3^2\)
\(=385.9\)
\(=3465\)
\(S=2^2+4^2+6^2+....+20^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+...+\left(2.10\right)^2\)
\(=1^2.2^2+2^2.2^2+2^2.3^2+....+2^2.10^2\)
\(=2^2.\left(1^2+2^2+3^2+....+10^2\right)\)
Mà \(1^2+2^2+3^2+...+10^2=385\)
Nên \(S=2^2.385=4.385=1540\)
A = \(2^2.\left(1^2+2^2+3^2+...+10^2\right)=4.385=1540\)
B=\(3^2.\left(1^2+2^2+3^2+...+10^2\right)=385.9=3465\)
Ta có:
\(2^2\left(1^2+2^2+3^2+...+10^2\right)=2^2+4^2+6^2+...+20^2=S\)
=> \(S=2^2.385=1540\)
b. S=(2+4+6+...+19+20)^2
P=(3+6+9+...+30)^2