K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+....+\dfrac{5}{25\times28}+\dfrac{5}{28\times31}\)

\(=5\times\left(\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{28\times31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+....+\dfrac{3}{28\times31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{31}\right)\)

\(=\dfrac{5}{3}\times\dfrac{27}{124}\)

\(=\dfrac{45}{124}\)

`#3107`

\(\dfrac{5}{4\times7}+\dfrac{5}{7\times10}+...+\dfrac{5}{25\times28}+\dfrac{5}{28\times31}\)

\(=\dfrac{5}{3}\times\left(\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{25\times28}+\dfrac{3}{28\times31}\right)\)

\(=\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{28}-\dfrac{1}{31}\right)\\ =\dfrac{5}{3}\times\left(\dfrac{1}{4}-\dfrac{1}{31}\right)\\ =\dfrac{5}{3}\times\dfrac{27}{124}\\ =\dfrac{45}{124}\)

24 tháng 9 2023

\(A=\dfrac{5}{4x7}+\dfrac{5}{7x10}+...+\dfrac{5}{25x28}+\dfrac{5}{28x31}\)

\(\dfrac{3}{5}A=\dfrac{7-4}{4x7}+\dfrac{10-7}{7x10}+...+\dfrac{28-25}{25x28}+\dfrac{31-28}{28x31}\)

\(\dfrac{3}{5}A=\dfrac{7}{4x7}-\dfrac{4}{4x7}+\dfrac{10}{7x10}-\dfrac{7}{7x10}+...+\dfrac{28}{25x28}-\dfrac{25}{25x28}+\dfrac{31}{28x31}-\dfrac{28}{28x31}\)

\(\dfrac{3}{5}A=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}+\dfrac{1}{28}-\dfrac{1}{31}\)

\(\dfrac{3}{5}A=\dfrac{1}{4}-\dfrac{1}{31}=\dfrac{27}{124}\)

\(A=\dfrac{27}{124}:\dfrac{3}{5}=\dfrac{27}{124}x\dfrac{5}{3}=\dfrac{45}{124}\)

3/(1×4)+3/(4×7)+3/(7×10)+3/(10×13)+3/(13×16)

=1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16

=1-1/16

=15/16

31 x 434 x 737 x 10310 x 13 = 1.3289876e+12

mik phải dùng máy tính chứ có sịp nhân mới trả lời đc 

nhỉ ?????

30 tháng 5 2019

1/1*4 + 1/4*7 + 1/7*10 + ... + 1/97*100

= 1/3(3/1*4 + 3/4*7 + 3/7*10 + ... + 3/97*100)

= 1/3(1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/97 - 1/100)

= 1/3(1 - 1/100)

= 1/3*99/100

= 33/100

trả lời 

=33/100

chúc bn

học tốt

6 tháng 4 2016

tinh nhanh 1/1x4 + 1/4x7 +1/7x10 +...+ 1/91x94 

Ta có :

1/1.4+1/4.7+...+1/91.94

=1/3.(1/1-1/4+...+1/91-1/94)

=1/3.(1/1-1/94)

=1/3.93/94

=31/94

6 tháng 4 2016

1/1.4+1/4.7+1/7.10+...+1/91.94

=1/3.(3/1.4+3/4.7+3/7.10+...+3/91.94)

=1/3.(1-1/4+1/4-1/7+1/7-1/10+...+1/91-1/94)

=1/3.(1-1-94)

=1/3.(93/94)

=31/94

6 tháng 4 2016

Đặt A= 1/1*4+1/4*7+1/7*10+....+1/91*94

3A= 3/1*4+3/4*7+3/7*10+....+3/91*94

3A=1/1-1/4+1/4-1/7+1/7-1/10+............+1/91-1/94

3A=1-1/94=93/94=>A=93/94*1/3=31/94

=31/94 k mình nha bạn 

4 tháng 9 2016

a=4099/308

b=2/5/186

26 tháng 6 2023

Em cần phần nào nhỉ .

26 tháng 6 2023

A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)

A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)

A = \(\dfrac{105}{106}\)

B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)

B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)

C= \(\dfrac{1}{5}\) \(\times\)\(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))

C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)

C = \(\dfrac{5}{51}\) 

D = \(\dfrac{1}{2}\) +   \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)

D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)

D = \(\dfrac{8}{9}\)

E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))

E = \(\dfrac{3}{2}\)\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)

E = \(\dfrac{147}{200}\)

30 tháng 6 2017

Đặt  \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)

\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)

\(B=\frac{2}{3}\cdot\frac{102}{103}\)

\(\Rightarrow B=\frac{68}{103}\)

30 tháng 6 2017

Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)

\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)

\(A=\frac{2}{3}\cdot\frac{102}{103}\)

\(A=\frac{68}{103}\)