Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= ( 1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10)+(1+2+1+2+3+1+2+3+4+1+2+3+4+5+1+2+3+4+5+6+1+2+3+4+5+6+7+1+2+3+4+5+6+7+8+1+2+3+4+5+6+7+8+9+1+2+3+4+5+6+7+8+9+10
A= tự phân tích nha :)
a)=1/2 . 8/15 - 3/4.47/9
=4/15 - 47/12
=-73/20
b)=2-1/3 . -21/20
=2+7/20
=47/20
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.........+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+..........+\frac{2}{73.75}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.......+\frac{1}{73}-\frac{1}{75}\)
\(=\frac{1}{3}-\frac{1}{75}=\frac{8}{25}\)
c) \(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+..........+\frac{4}{64.66}\)
\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+..........+\frac{2}{64.66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+.....+\frac{1}{64}-\frac{1}{66}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{66}\right)=2.\frac{31}{132}=\frac{31}{66}\)
d) \(\frac{9}{5.8}+\frac{9}{8.11}+\frac{9}{11.14}+........+\frac{9}{497.500}\)
\(=3.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+..........+\frac{3}{497.500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+......+\frac{1}{497}-\frac{1}{500}\right)\)
\(=3.\left(\frac{1}{5}-\frac{1}{500}\right)=3.\frac{99}{500}=\frac{297}{500}\)
e) \(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+......+\frac{1}{93.95}\)
\(=\frac{1}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+........+\frac{2}{93.95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+........+\frac{1}{93}-\frac{1}{95}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{95}\right)=\frac{1}{2}.\frac{18}{95}=\frac{9}{95}\)
g) \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+..........+\frac{1}{200.203}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{200.203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{200}-\frac{1}{203}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{203}\right)=\frac{1}{3}.\frac{201}{406}=\frac{67}{406}\)
1, Ta có :
\(x+\frac{3}{5}=\frac{4}{7}\div\frac{8}{21}\)
\(x+\frac{3}{5}=\frac{4}{7}\times\frac{21}{8}\)
\(x+\frac{3}{5}=\frac{3}{2}\)
\(x=\frac{3}{2}-\frac{3}{5}\)
\(x=\frac{15}{10}-\frac{6}{10}\)
\(x=\frac{9}{10}\)
Vậy x = \(\frac{9}{10}\)
2, Ta có :
\(\frac{2}{3}+\frac{3}{4}\div x=-\frac{1}{6}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{2}{3}\)
\(\frac{3}{4}\div x=-\frac{1}{6}-\frac{4}{6}\)
\(\frac{3}{4}\div x=-\frac{5}{6}\)
\(x=\frac{3}{4}\div\left(-\frac{5}{6}\right)\)
\(x=\frac{3}{4}\times\left(-\frac{6}{5}\right)\)
\(x=-\frac{9}{10}\)
Vậy x = \(-\frac{9}{10}\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
\(\frac{3}{5}-\frac{-7}{10}-\frac{13}{-20}=\frac{3}{5}+\frac{7}{10}+\frac{13}{20}=\frac{12}{20}+\frac{14}{20}+\frac{13}{20}=\frac{39}{20}\)
\(\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}-\frac{-1}{6}=\frac{1}{2}+\frac{-1}{3}+\frac{1}{4}+\frac{1}{6}=\frac{6+(-4)+3+2}{12}=\frac{7}{12}\)
\(\frac{9}{4}.\frac{8}{27}.\frac{5}{7}=\frac{9.8.5}{4.27.7}=\frac{1.2.5}{1.3.7}=\frac{10}{21}\)
\(\frac{2}{5}.(\frac{2}{3}-\frac{1}{4})+\frac{1}{2}=\frac{2}{5}.(\frac{8}{12}-\frac{3}{12})+\frac{1}{2}=\frac{2}{5}.\frac{5}{12}+\frac{1}{2}=\frac{1}{6}+\frac{1}{2}=\frac{1}{6}+\frac{3}{6}=\frac{4}{6}=\frac{2}{3}\)
\((\frac{1}{3}-\frac{1}{6}):(\frac{1}{3}+\frac{1}{6})=(\frac{2}{6}-\frac{1}{6}):(\frac{2}{6}+\frac{1}{6})=\frac{1}{6}:\frac{3}{6}=\frac{1}{6}.\frac{6}{3}=\frac{1.6}{6.3}=\frac{1.1}{1.3}=\frac{1}{3}\)
Hok tốt
\(\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{9}.\frac{1}{10}\)
\(=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{10}\)
\(=\frac{9}{10}\)