K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cộng hết tất cả 1/1+2+3+.....+10 thì ta chỉ cần cộng 1+2+3+4+5+6+7+8+9+10 là xong rồi tự tính

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.............+\frac{1}{1+2+3+......+10}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..............+\frac{1}{45}\)

Đến đây bạn làm tiếp nhé

10 tháng 9 2017

Thua k câu hỏi trước của mình nhé

10 tháng 9 2017

k là k đánh lộn

15 tháng 2 2020

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+10}\)

\(=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)

\(=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)

\(=2\cdot\frac{9}{22}\)

\(=\frac{9}{11}\)

12 tháng 5 2015

Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)

         = \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)

         = \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)

         = \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)

         = 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)

         = \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)

20 tháng 9 2016

a)\(\frac{2}{3}+\frac{3}{4}+\frac{1}{6}=\frac{19}{12}\); b)\(2\frac{1}{10}-\frac{3}{4}-\frac{2}{5}=\frac{3}{4}\)c)\(\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)d) \(\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\)