\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+......+\frac{1}{1+2+3+....+10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+10}\)

\(=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)

\(=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)

\(=2\cdot\frac{9}{22}\)

\(=\frac{9}{11}\)

cộng hết tất cả 1/1+2+3+.....+10 thì ta chỉ cần cộng 1+2+3+4+5+6+7+8+9+10 là xong rồi tự tính

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.............+\frac{1}{1+2+3+......+10}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..............+\frac{1}{45}\)

Đến đây bạn làm tiếp nhé

3 tháng 7 2018

Câu b:

\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)

\(\frac{63}{20}+\frac{3}{5}\)

\(\frac{15}{4}\)

7 tháng 7 2018

\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)

\(\frac{25}{8}:\frac{5}{6}\)

\(\frac{25}{8}.\frac{6}{5}\)

\(\frac{30}{8}\)

20 tháng 9 2016

a)\(\frac{2}{3}+\frac{3}{4}+\frac{1}{6}=\frac{19}{12}\); b)\(2\frac{1}{10}-\frac{3}{4}-\frac{2}{5}=\frac{3}{4}\)c)\(\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)d) \(\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\)

21 tháng 9 2020

em cần gấp ạ ;)))

21 tháng 9 2020

2)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{1.50}{100}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)