\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cộng hết tất cả 1/1+2+3+.....+10 thì ta chỉ cần cộng 1+2+3+4+5+6+7+8+9+10 là xong rồi tự tính

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.............+\frac{1}{1+2+3+......+10}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..............+\frac{1}{45}\)

Đến đây bạn làm tiếp nhé

20 tháng 9 2016

a)\(\frac{2}{3}+\frac{3}{4}+\frac{1}{6}=\frac{19}{12}\); b)\(2\frac{1}{10}-\frac{3}{4}-\frac{2}{5}=\frac{3}{4}\)c)\(\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)d) \(\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\)

15 tháng 2 2020

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+10}\)

\(=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)

\(=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)

\(=2\cdot\frac{9}{22}\)

\(=\frac{9}{11}\)

10 tháng 9 2017

Thua k câu hỏi trước của mình nhé

10 tháng 9 2017

k là k đánh lộn