K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

a^3-a^2b-ab^2+b^3= (a+b)^3

tại a= 5,75 và b=4,25

=>(5,75+4,25)^3=10^3=1000

29 tháng 9 2017

nguyễn hà linh Sai rồi -.-

28 tháng 8 2018

\(M=a^3-a^2b-ab^2\)

\(M=a\left(a^2-ab-b^2\right)\)

\(M=a\left[\left(a-b\right)\left(a+b\right)-ab\right]\)

Thay a = 5,75 và b = 4,25 vào M ta được

\(M=5,75\left[\left(5,75-4,25\right)\left(5,75+4,25\right)-5,75.4,25\right]\)

\(M=5,75\left(1,5.10-24,4375\right)\)

\(M=5,75\left(15-24,4375\right)\)

\(M=5,75.\left(-9,4375\right)\)

\(M=-54,265625\)

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

2 tháng 1 2017

A = a^3 +b^3

   = ( a + b )( a^2 - ab + b^2)

   = ( a + b )( a^2 + 2ab + b^2 - 3ab )

   = ( a +b ) [( a + b )^2 - 3ab ]

   = 2 ( 2^2 - 3.3 ) = -10

2 tháng 1 2017

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=8-18=-10\)

13 tháng 2 2018

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

10 tháng 6 2018

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

8 tháng 1 2018

M=\(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

 =\(\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2b^2\left(a+b\right)+6a^2b^2\left(a+b\right)\)

=\(a^2-ab+b^2\)

=\(\left(a+b\right)^2-2ab-ab\)

=-3ab

10 tháng 6 2018

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

12 tháng 6 2018

\(a)\) Ta có : 

\(a+b+c=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm ) 

Vậy \(a^3+b^3+c^3=3abc\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

a, a+b+c=0 => a+b=-c 

=>(a+b)3=(-c)3

=>a3+3a2b+3ab2+b3=-c3 

=>a3+3ab(a+b)+b3=-c3

Mà a+b=-c

=>a3-3abc+b3=-c3

=>a3+b3+c3=3abc (đpcm)

b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

mà a3+b3+c3=3abc (bài a)

\(\Rightarrow P=\frac{3abc}{abc}=3\)

Vậy P=3

2 tháng 9 2017

\(.\)M= bn ghi lại đề nha ^.^

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)

\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)

k cho mình nha bn thanks nhìu <3 <3       (^3^)

2 tháng 9 2017

2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)

Đặt \(x^2+5x+4=t\)

(1) = \(t.\left(t+2\right)-24\)

\(=t^2+2t+1-25\)

\(=\left(t+1\right)^2-25\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)(2)

Thay \(t=x^2+5x+4\)vào (2) ta có:

(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

k mình nha bn <3 thanks

21 tháng 7 2017

\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)

\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3a^2-3b^2\)

\(=2\left(a^2-ab+b^2\right)-3a^2-3b^2\)

\(=2a^2-2ab+2b^2-3a^2-3b^2\)

\(=-a^2-2ab-b^2\)

\(=-\left(a+b\right)^2\)

\(=-1\)

Vậy giá trụ của biểu thức M là - 1 tại a + b = 1

21 tháng 7 2017

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

29 tháng 11 2019

Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)

=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2     (vì a+b=1)

=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2 

=> M = 1

Vậy M = 1

20 tháng 4 2020

Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\)vào biểu thứ ta được:

\(M=1-3ab+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1+\left[-3ab+3ab\left(a^2+b^2\right)+6a^2b^2\right]\)

\(=1+3ab\left(-1+a^2+b^2+2ab\right)\)

\(=1+3ab\left(a^2+2ab+b^2-1\right)\)

\(=1+3ab\left[\left(a+b\right)^2-1\right]\)

Thay \(a+b=1\)vào biểu thức ta được:

\(M=1+3ab\left(1-1\right)=1+3ab.0=1\)

Vậy \(M=1\)