K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

Bỏ () Rồi tính nhé
 

7 tháng 1 2016

lời giải như thế nào bn

 

13 tháng 8 2020

=(-19,95+4,95) +(-45,75+5,75) 

[(-19,95) + (-45,75)] + [(4,95) + (+5,75)]

=> [-65,7] + [10,7]

=>        -55

nếu mn thấy đúng nhớ cho mk nha

14 tháng 8 2017

NẾU MÌNH CÓ VIẾT SAI ĐỀ MONG CÁC BẠN GIÚP

14 tháng 8 2017

Bạn viết đúng rồi 

22 tháng 4 2018

tam giác vuông hay tam giác gì vậy bạn?

22 tháng 4 2018

Giản Nguyên mình cũng ko biết bạn nhé, đề bài ghi như vậy nên mình mới ko hiểu

11 tháng 2 2021

\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)

\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)

\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)

\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)

\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)

\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

\(km+k+m=4\)

11 tháng 2 2021

2 dòng đầu sai nhưng quên xoá :) bỏ đi nhé 

15 tháng 2 2020

Đặt : \(P=\frac{48^2\cdot8^5\cdot100^9}{12^2\cdot2^{15}\cdot4^2}\)

\(=\frac{\left(2^4\cdot3\right)^2\cdot\left(2^3\right)^5\cdot\left(2^2\cdot5^2\right)^9}{\left(2^2\cdot3\right)^2\cdot2^{15}\cdot\left(2^2\right)^2}\)

\(=\frac{2^8\cdot3^2\cdot2^{15}\cdot2^{18}\cdot5^{18}}{2^4\cdot3^2\cdot2^{15}\cdot2^4}\)

\(=\frac{2^{41}\cdot3^2\cdot5^{18}}{2^{23}\cdot3^2}=2^{18}\cdot5^{18}=\left(2\cdot5\right)^{18}=10^{18}\)

Vậy : \(P=10^{18}\)