K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

\(D=\frac{9x^2+6x+1}{3x+1}\left(x\ne\frac{-1}{3}\right)\)

\(\Leftrightarrow D=\frac{\left(3x+1\right)^2}{3x+1}=3x+1\)

thay x=-4(tm) vào biểu thức D ta có: D=3.(-4)+1=-12+1=-11

vậy D=-11 với x=-4

8 tháng 12 2016

chào bn

4x=3y và x.y=12

4x=3y=>x/3=y/4 và x.y=12

Đặt k=x/3=y/4.ta có x=3k,y=4k

từ x.y=12=>3k.4k=12=>12k^2=12=>k^2=1=>k=± 1

Với k=1 thì x/3=y/4=1=>x=3,y=4

Với k=-1 thì x/3=y/4=-1=>x=-3,y=-4

24 tháng 9 2016

(-19,95 - 45,75) + (4,95 + 5,75)

=[(-19,95)+4,95]+[(-45,75)+5,75]

=(-15)+(-40)

=-55

24 tháng 9 2016

mình cảm ơn bạn nhiều

 

25 tháng 6 2018

Ta có: 290=(29)10=(23.3)10=(23)3.10=83.10

          360=(36)10=(33.2)10=(32)3.10=93.10

Vì 83.10 < 93.10

Nên 290< 360

Tham khảo thôi nhé mk cx ko chắc

      

25 tháng 6 2018

Ta có:290=(23)30=830

         360=(32)30=930

Vì 830<930

nên 290<360

Vậy 290<360

15 tháng 2 2020

Đặt : \(P=\frac{48^2\cdot8^5\cdot100^9}{12^2\cdot2^{15}\cdot4^2}\)

\(=\frac{\left(2^4\cdot3\right)^2\cdot\left(2^3\right)^5\cdot\left(2^2\cdot5^2\right)^9}{\left(2^2\cdot3\right)^2\cdot2^{15}\cdot\left(2^2\right)^2}\)

\(=\frac{2^8\cdot3^2\cdot2^{15}\cdot2^{18}\cdot5^{18}}{2^4\cdot3^2\cdot2^{15}\cdot2^4}\)

\(=\frac{2^{41}\cdot3^2\cdot5^{18}}{2^{23}\cdot3^2}=2^{18}\cdot5^{18}=\left(2\cdot5\right)^{18}=10^{18}\)

Vậy : \(P=10^{18}\)

11 tháng 2 2021

\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)

\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)

\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)

\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)

\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)

\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

\(km+k+m=4\)

11 tháng 2 2021

2 dòng đầu sai nhưng quên xoá :) bỏ đi nhé 

17 tháng 1 2022

Bỏ () Rồi tính nhé