Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{2004.2005}\)
\(\Leftrightarrow2M=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{2004.2005}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{2004.2005}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{2004}-\frac{1}{2005}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2005}\right)\)
\(=2.\left(\frac{2005}{4010}-\frac{2}{4010}\right)\)
\(=2.\frac{2003}{4010}\)
\(=\frac{2003}{2005}\)
\(M=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{2004\cdot2005}\)
\(M=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{2004\cdot2005}\)
\(M=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2004\cdot2005}\right)\)
\(M=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2004\cdot2005}\right)\)
\(M=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
\(M=2\left(\frac{1}{2}-\frac{1}{2005}\right)\)
\(M=2\cdot\frac{2003}{4010}\)
\(M=\frac{2003}{2005}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{2004.2005}\)
Ta có: \(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{2004.2005}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{2004.2005}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2004.2005}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{2005}\right)\)
\(A=\frac{2003}{2005}\)
xem lại đề. số hạng cuối tử số tự nhiên =2; ??? mẫu số cũng ko theo quy luật của 3 số hạng đầu
a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)
a) A=\(\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2004}=1-\dfrac{1}{2003.2004}\)
B = \(\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)
Vì \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\)
\(\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)
Vậy A < B
b) \(\left(3X-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)
\(\left(3X-2^4\right).7^5=2.7^6.1\)
\(\left(3X-2^4\right).7^5=2.7^6\)
\(\left(3X-2^4\right).=2.7^6:7^5\)
\(3X-2^4=2.7\)
\(3X-16=14\)
\(3X=16+14=30\)
\(X=30:3=10\)
Vậy X = 10
1/ \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}=1-\dfrac{1}{2003.2004}\)
\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)
Vì \(1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\Leftrightarrow A< B\)
2/ \(\left(3x-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)
\(\Leftrightarrow\left(3x-2^4\right).7^5=2.7^6.1\)
\(\Leftrightarrow3x-2^4=2.7^6:7^5\)
\(\Leftrightarrow3x-2^4=2.7\)
\(\Leftrightarrow3x-16=14\)
\(\Leftrightarrow3x=30\)
\(\Leftrightarrow x=10\left(tm\right)\)
Vậy ..
1, mình không ghi đề nha
A= \(\frac{1.1+1.1+1.1}{3+3.3+3.3+3}\)
A=\(\frac{1.3}{9.3}\)
A=\(\frac{1}{9}\)
bạn xem lại đề bài
ban đầu tử là 1 mà sau khi ... tử lại thành 2
1/2M=1/2-1/2005