Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G= \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}\)
G= \(\frac{\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{98.99}{2}}{1.2+2.3+3.4+...+98.99}\)
G = \(\frac{\frac{1.2+2.3+...+98.99}{2}}{1.2+2.3+3.4+...+98.99}\)
G= \(\frac{1}{2}\)
A = 1.2 + 2.3 + 3.4 + ... + 98.99
A = 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 98.(98 + 1)
A = 12 + 1 + 22 + 2 + 32 + 3 + ... + 982.98
A = (12 + 22 + 32 + ... + 982) + (1 + 2 + 3 + ... + 98)
A = (12 + 22 + 32 + ... + 982) + 4851 (1)
B = 12 + 22 + 32 + ... + 982 (2)
(1)(2) => A - B = 4851 ⋮ 4851
ta có: B = 12 + 22 + 32 +...+982 = 1.1 +2.2+3.3+...+98.98
=> A-B = (1.2+2.3+3.4+4.5+...+98.99) - (1.1+2.2+3.3+...+98.98)
A-B = (1.2-1.1) + (2.3-2.2) + (3.4-3.3) + (4.5-4.4) + ...+ (98.99-98.98)
A-B = 1.(2-1) + 2.(3-2) +3.(4-3) + 4.(5-4) + ...+ 98.(99-98)
A-B = 1 +2+3+4+...+98
A-B = (1+98).98:2
A -B = 4851 chia hết cho 4851
\(\text{a=1.2+2.3+3.4+......+98.99}\)
\(=1\left(1\text{+}1\right)\text{+}2\left(2\text{+}1\right)\text{+}3\left(3\text{+}1\right)\text{+}.........\text{+}98\left(98\text{+}1\right)\)
\(=1^2\text{+}1\text{+}1^2\text{+}2\text{+}3^2\text{+}3\text{+}...\text{+}98^2\text{+}98\)
\(=b\text{+}\left(1\text{+}2\text{+}3\text{+}...\text{+}98\right)\)
\(=b\text{+}\left(98\text{+}1\right).98:2\)
\(=b\text{+}4851\)
\(\Rightarrow a-b=4851\)
Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
ta có :
\(a-b=1.2+\left(2.3-2^2\right)+\left(3.4-3^2\right)+..+\left(98.99-98^2\right)\)
\(=2+2+3+4+..+98\)
\(=1+\left(1+2+3+..+98\right)=1+98\times\frac{99}{2}=4852\)
a-b=(1.2+2.3+3.4+4.5+...+98.99)-(12+22+32+...+982)
1.2+2.3+3.4+4.5+...+98.99-12-22-32-...-982
=1(2-1)+2(3-2)+...+98(99-98)
=1+2+...+98
Đến đây bạn tự tính