K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

(x³+xy)15 = (15)∑(k=0) Ck15 . (x³)(15-k). (xy)k
= (15)Σ(k=0) Ck15 . x45-3k. xk . yk
= (15)Σ(k=0) Ck15 . x45-2k . yk
⇒ 45-2k = 25
Và k=10 ⇒ k=10 ⇒ ℂ1015

NV
12 tháng 11 2019

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)

23 tháng 12 2016

1) 216

15 tháng 6 2017

Ta có (x-2y)4 =[x+(-2y)]4=C4k.x4-k.(-2y)k

Hệ số của số hạng có xy3 ứng với : 4-k=1 va k=3 <=> k=3

Vậy hệ số của xy3 là : C43.(-2)3=-32

NV
28 tháng 10 2019

\(A=\left(1+x\left(1+x\right)\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^k\left(1+x\right)^k=\sum\limits^{10}_{k=0}\left(\sum\limits^k_{i=0}C_{10}^kC_k^ix^{i+k}\right)\)

Do \(\left\{{}\begin{matrix}0\le i\le k\le10\\i+k=10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;9\right);\left(2;8\right);\left(3;7\right);\left(4;6\right);\left(5;5\right)\)

Hệ số: \(C_{10}^9C_9^1+C_{10}^8C_8^2+C_{10}^7C_7^3+C_{10}^6C_6^4+C_{10}^5C_5^5\)

4 tháng 12 2021

(i;k)=(0;10) nữa đc mà đk ạ

 

18 tháng 12 2016

-11440

28 tháng 11 2017

Ta có: Số hạng bất kì trong khai triển có dạng :

\(T_{k+1}=C^k_{13}.2x^{13-k}.y^k\)

Hệ số của số hạng chứa \(x^4y^9\Leftrightarrow k=9\)

Hệ số : \(T_{10}=C^9_{13}=715\)

4 tháng 11 2016

\(\left(1+x\right)^{11}=\sum\limits^n_{k=0}.C^k_n.a^{n-k}.b^k\)

\(=\sum\limits^{11}_{k=0}.C^k_{11}.1^{11-k}.x^k\)

Số hạng chứa \(x^7\)

\(\Leftrightarrow k=7\)

Vậy hệ số \(C^7_{11}.1^4\)

4 tháng 11 2016

Đây là bài toán về nhị thức Niu-tơn nè mình có coi trong sách nâng cao lớp 8 có nè :

\(\left(2-x\right)^{19}=\sum\limits^n_{k=0}.C_n^k.a^{n-k}.b^k\)

\(=\sum\limits^{19}_{k=0}.C^k_{19}.1^{19-k}.x^k\)

Số hạng chứa \(x^9\)\(\Rightarrow k=9\)

Vậy hệ số là : \(C^9_{19}.1^{10}\)

5 tháng 11 2016

của b Tuấn ý thiếu điều kiện mà với lại phải là (-x) k chứ