K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

17 tháng 5 2017

Xét phương trình hoành độ giao điểm của (d) và (p):

\(x^2=x+m-1\)

\(\Leftrightarrow x^2-x-m+1=0\left(1\right)\)

Xét phương trình (1) có:

\(\Delta=\left(-1\right)^2-4\left(-m+1\right)=4m-3\)

Để (d) cắt (p) tại 2 điểm thì phương trình (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow4m-3>0\Leftrightarrow m>\dfrac{3}{4}\)

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=1-m\end{matrix}\right.\)

Theo đề bài ta có:

\(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\)

\(\Leftrightarrow\dfrac{4\left(x_1+x_2\right)}{x_1x_2}-x_1x_2+3=0\)

\(\Leftrightarrow\dfrac{4}{1-m}-\left(1-m\right)+3=0\left(m\ne1\right)\)

\(\Leftrightarrow4-\left(1-m\right)^2+3\left(1-m\right)=0\)

\(\Leftrightarrow m^2+m-6=0\)

\(\Leftrightarrow\left(m-2\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\left(tm\right)\\m=-3\left(ktm\right)\end{matrix}\right.\)

Vậy để (d)cắt (p) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(4\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+3=0\) thì m=2

20 tháng 10 2017

\(\sqrt{x-2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\\sqrt{x-1}-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\\sqrt{x-1}=-1\left(vn\right)\end{matrix}\right.\)

Kl: x=10

**khỏi cần đk**

20 tháng 10 2017

á quên, đk x >/ 1

\(=\sqrt{2}\left(\dfrac{2+\sqrt{5}}{2+\sqrt{5}+1}+\dfrac{2-\sqrt{5}}{2-\sqrt{5}+1}\right)\)

\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\right)\)

\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5}{4}\)

\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{\sqrt{2}}{2}\)

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

7 tháng 6 2017

\(\sqrt{18-2\sqrt{65}}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{13}\right)^2}\)

\(=\sqrt{13}-\sqrt{5}\)

6 tháng 7 2017

Vì đây là lần đầu tiên bn gửi câu hỏi nên mk đã kiên nhẫn dịch cái đề và hi vọng nó đúng!

Ta có: \(\left(\sqrt{8+2\sqrt{7}}+2.\sqrt{8-2\sqrt{7}}\right).\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{7+2\sqrt{7}+1}+2.\sqrt{7-2\sqrt{7}+1}\right).\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{\left(\sqrt{7}+1\right)^2}+2.\sqrt{\left(\sqrt{7}-1\right)^2}\right)\left(\sqrt{63}+1\right)\)

\(=\left(\left|\sqrt{7}+1\right|+2.\left|\sqrt{7}-1\right|\right).\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{7}+1+2\sqrt{7}-2\right)\left(\sqrt{63}+1\right)\)

\(=\left(3\sqrt{7}-1\right)\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{63}-1\right)\left(\sqrt{63}+1\right)=63-1=62\)

6 tháng 7 2017

Ôi chu choa mạ ơi! Cái đề kiểu chi ri???

20 tháng 9 2017

Sao bh lại làm đề ôn thi vào 10

20 tháng 9 2017

;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))