K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\sqrt{2}\left(\dfrac{2+\sqrt{5}}{2+\sqrt{5}+1}+\dfrac{2-\sqrt{5}}{2-\sqrt{5}+1}\right)\)

\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\right)\)

\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5}{4}\)

\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{\sqrt{2}}{2}\)

12 tháng 7 2017

1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)

\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)

\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)

\(=\sqrt{4}=2\)

12 tháng 7 2017

1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

11 tháng 8 2017

\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) \(=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

20 tháng 10 2017

\(\sqrt{x-2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\\sqrt{x-1}-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\\sqrt{x-1}=-1\left(vn\right)\end{matrix}\right.\)

Kl: x=10

**khỏi cần đk**

20 tháng 10 2017

á quên, đk x >/ 1

19 tháng 10 2017

\(\dfrac{\sqrt{\dfrac{-\left(2\right)^5}{5^3.5^2}.\dfrac{-\left(5\right)^3}{2^9}.5^2}}{\sqrt[3]{\dfrac{-\left(3\right)^3}{2^6}.\dfrac{\left(5\right)^2}{3^2.2^5}.\dfrac{\left(5\right)^4}{3^4}}}=\dfrac{\sqrt{\dfrac{1}{2^4}}}{\sqrt[3]{\dfrac{-\left(5\right)^6}{2^{12}.3^3}}}=\dfrac{\dfrac{1}{4}}{\sqrt[3]{\left(\dfrac{-5^2}{2^4.3}\right)^3}}=\dfrac{\dfrac{1}{4}}{\dfrac{-25}{48}}=\dfrac{-12}{25}\)

11 tháng 8 2017

a/ \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\) \(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\).

b/ \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow A^2=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}=8+2\sqrt{6-2\sqrt{5}}\) \(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{5}+1\)

c/ \(B=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\Rightarrow\sqrt{2}B=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\sqrt{5}+2=2\Rightarrow B=\sqrt{2}\)

30 tháng 5 2017

\(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=|\sqrt{5}-1|\)

= \(\sqrt{5}-1\)

30 tháng 5 2017

cảm ơn bn nhiềuvui

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)

b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)

\(\Leftrightarrow4\sqrt{x-3}=2x\)

\(\Leftrightarrow2\sqrt{x-3}=x\)

\(\Leftrightarrow\sqrt{4x-12}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)

b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)

\(\Leftrightarrow4\sqrt{x-3}=2x\)

\(\Leftrightarrow2\sqrt{x-3}=x\)

\(\Leftrightarrow\sqrt{4x-12}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)