Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm phần sườn còn phần kết luận bạn tự làm
- \(A=x^2-5x+3=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
- \(B=-x^2-x=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
- \(C=2x^2+5x+7=2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
- \(D=-x^2+5x+7=-\left(x-\frac{5}{2}\right)^2+\frac{53}{4}\le\frac{53}{4}\)
a) \(A=x^2-5x+3\)
\(A=x^2-5x+\frac{25}{4}-\frac{13}{4}\)
\(A=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)
Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Min_A=-\frac{13}{4}\) tại \(x=\frac{5}{2}\)
b) \(B=\left(-x^2\right)-x\)
\(B=-\left(x^2+x\right)\)
Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow-\left(x^2+x\right)\le0\)
Dấu = xảy ra khi: \(-\left(x^2+x\right)=0\Rightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Vậy: \(Max_B=0\) tại \(\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
A = (x-1)(x+2)(x+3)(x+6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= ( x2 + 5x - 6)(x2 + 5x + 6)
= ( x2 + 5x )2 - 36 \(\ge\) -36
Dấu "=" <=> x = 0 hoặc x = -5
Vậy A min = -36 <=> x = 0 hoặc x = - 5 .
B=x2 - 2x+y2 +4y+8
=x2-2x+1+y2+4y+4+3
=(x-1)2+(y+2)2+3
=(x-1)2+(y+2)2+3 \(\ge\)3
Dấu "=" <=>x=1 và y=-2
Vậy A min=3 <=>x=1 và y=-2
1. nhóm (x-1)(x+6)(x+2)(x+3)
nhân vào
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6)
từ đó suy ra
(x^2-5x)^2 - 6^2
vì (x^2-5x)^2 lun lớn hon ko
nên dấu “=” xảy ra khi (x^2-5x)^2=0
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5
ta có :\(\left(x^2y^2-xy+1\right)\left(1+xy\right)=x^3y^3+1=\left(xy\right)^3+1=3^3+1=28\)
a)P=5x(x2-3)+x2(7-5x)-7x2
=5x3-15x+7x2-5x3-7x2
=15x
thay x=5 vào P=15x ta được
15.5=75
b)Q=x(x-y)+y(x-y)
=x2-xy+xy-y2
=x2-y2
Thay x=1,5 ; y=10 vào Q=x2-y2 ta được :
1,52-102=\(\frac{-391}{4}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
5x(x2-3) +x2(7-5x)-7x2
=5x3-15x +7x2 -5x3 -7x2
=-15x
thay x=-5, Ta có
(-15).(-5) =75