Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌNH BIK LÀM CÂU A THUI, mình ko ghi lại đề nha
P=1/2.2/3.3/4........99/100
(Nhân tử với tử, mẫu nhân với mẫu ) ta có
P=1.2.3.4.......99/2.3.4...........100
P=1/100
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
Ta có công thức :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng vào bài toán ta được :
\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)
\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)
\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)
=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)
=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)
=1/2(2+1/1-1/3)...(2+1/2014-1/2016)
=1/2*(1/1-1/2016)
=3023/4032
\(P=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(P=\frac{1}{1}-\frac{1}{100}\)
\(P=\frac{99}{100}\)
\(HT\)
\(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(P=1+\left(\dfrac{-1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+..+\left(\dfrac{-1}{99}+\dfrac{1}{99}\right)+\dfrac{-1}{100}\)
\(P=1+0+0+....+0+\dfrac{-1}{100}\)
\(P=1+\dfrac{-1}{100}\)
\(P=\dfrac{99}{100}\)
a) B = 5/16 : 0,125 - ( 9/4 - 0,6 ) * 10/11
B = 5/16 * 8 - 9/4 * 10/11 + 0,6 * 10/11
B = 5/2 - 45/22 + 3/11
B = 55/22 - 45/22 + 6/22
B = 8/11
b) \(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right).....\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5.....100}{2.3.4.....99}\)
\(=\frac{\left(3.4.....99\right).100}{2\left(3.4.....99\right)}\)
\(=\frac{100}{2}\)
\(=50\)
a)B= 5/6 : 1/8 - (9/4 - 3/5 ) * 10/11
= 5/2 - 33/20 * 10/11
= 5/2 - 3/2
= 1
b) 3/2.4/3.5/4....100/99
= 3.4.5...100/2.3.4...99
=100/2
=50
\(P=\frac{1}{2}.\frac{2}{3}......\frac{99}{100}=\frac{1.2.3....99}{2.3.4....100}=\frac{1}{100}\)
\(Q=\frac{4}{1.3}.\frac{9}{2.4}.....\frac{9901}{99.100}=\frac{2^2}{1.3}.\frac{3^2}{2.4}.....\frac{99^2}{99.100}=\frac{2^2.3^2...99^2}{1.2.3^2....98^2.99.100}=\frac{2.99}{100}=\frac{99}{50}\)