Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x1+x2+x3+...+x51=0
=> (x1+x2) + (x3+x4) + ...+ (x49+x50) + x51=0
mà x1+x2=x3+x4=...=x49+x50=1
=> 1+1+1...+1( 25 chữ số 1) +x51=0
=> 25+x51=0
=> x51= 0-25= -25
mà x50+x51=1
=> x50+(-25)=1 => x50=26
Nếu là tính x50 thì từ x49 + x50 = 1 => x50 = 1 - x49
Chỉ kết luận được thế thôi. Nếu là tính x51 (do viết nhầm đầu bài) thì
x1 + x2 + ... + x49 + x50 = 25
x51 = (x1 + x2 + ... + x51) - (x1 + x2 + ... + x50) = 0 - 25 = -25
Số phân tấm vải thứ nhất còn lại là : 1 -1/7 = 6/7 tấm
Số phần tấm vải thứ hai còn lại là : 1-2/11 = 9/11 tấm
số phần tấm vải thứ 3 còn lại là : 1 - 1/3 = 2/3 tấm
Vì sau khi bán thì ba tấm còn lại băng nhau nên ta có:
6/7 tấm thứ 1 = 9/11 tấm thứ 2 = 2/3 tấm thứ 3 (quy đồng tử)
Ta có: 18/21 tấm thứ 1 = 18/22 tấm thứ 2 = 18/27 tấm thứ 3
ta có số đồ:
tấm thứ 1: 21 phần
tấm thứ 2: 22 phần
tấm thứ 3 : 27 phần
Đến đây đưa về bài toán tổng tỉ
tổng số phần bằng nhau là: 21 + 22 + 27 = 70 phần
Số m vải tấm thứ nhất là: 210 . 21/70 = 63 (m)
Số m vải tấm thứ 2 là: 210 .22/70 = 66 (m)
số m vải tấm thứ 3 là 210 . 27/70 = 81 (m)
Đề thiếu ; Đủ là thế này !!
Cho x1+x2+x3+..............+x51=0
x1+x2=x3+x4=.....=x49+x50 =x51+x50=1
Tính x50
Giải :
\(x_1+x_2+...+x_{51}=0\\ \Rightarrow\left(x_1+x_2\right)+\left(x_3+x_4\right)+...+\left(x_{49}+x_{50}\right)+x_{51}=0\\ \Rightarrow25+x_{51}=0\\ \Rightarrow x_{51}=-25\\ \Rightarrow x_{50}=26\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow2A=1-\frac{1}{101}\)
\(\Rightarrow2A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:2\)
\(\Rightarrow A=\frac{50}{101}.\)
Chúc bạn học tốt!
\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\\ A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\\ A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\\ A=\frac{1}{2}\left(1-\frac{1}{101}\right)\\ A=\frac{1}{2}\cdot\frac{100}{101}\\ A=\frac{50}{101}\)
\(B=1-2+3-4+...+49-50\\ B=\left(1-2\right)+\left(3-4\right)+...+\left(49-50\right)\\ B=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\text{ (có 25 số -1)}\\ B=\left(-1\right)\cdot25=-25\)