K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Ta có M = x4 - 2x3 + 3x2 - 2x + 2

             = x4 - x3 - x3 + x+ 2x- 2x +2

             = x2( x2 - x ) - x( x- x ) + 2( x- x ) + 2

             = ( x- x + 2 )( x2 - x ) + 2

             = ( 4 + 2 )*2 + 2 = 14

30 tháng 10 2016

đáp án sai rồi

22 tháng 11 2017

\(M=x^4-2x^3+3x^2-x+2\)

\(M=x^4-x^3+x^2+2x^2-2x+2\)

\(M=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)

\(M=\left(x^2-x\right)\left(x^2-x+2\right)+2\)

\(M=4.\left(4+2\right)+2\)( Vì \(x^2-x=4\))

\(M=24+2=26\)

Vậy M = 26 khi \(x^2-x=4\)

2 tháng 10 2016

Vì f(x) chia hết cho x+3 nên ta có thể viết \(f\left(x\right)=2x^3-5x^2+x-a=\left(x+3\right).Q\left(x\right)\Rightarrow f\left(-3\right)=-102-a=0\Rightarrow a=-102\)

2 tháng 10 2016

Xét phép chia (2x3-5x2+x-a) : (x+3)

f(x)=(2x3-5x2+x-a) chia hết cho (x+3) nếu tồn tại đa thức q(x) sao cho f(x)=(x+3).q(x)

Ta có: f(-3)=2.(-3)3-5.(-3)2+(-3)-a=(-3+3).q(x)

=>-102-a=0=>a=-102

Vậy a=-102 thì.................

21 tháng 6 2017

B =  x2 + 4x + 6
   = (x2 + 4x + 4) + 2
   = (x + 2)2 + 2 > 0

D =  x2 + x + 1
   = (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
   = (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0

F =  2x2 + 4x + 3
   = (2x2 + 4x + 2) + 1
   = (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0

H =  4x2 + 4x + 2
   = (4x2 + 4x + 1) + 1
   = (2x + 1)2 + 1 > 0

K =  4x2 + 3x + 2
   = (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
   = (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0

L =  2x2 + 3x + 4
   = (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
   = (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0

Vậy các biểu thức trên luôn dương với mọi x

21 tháng 6 2017

\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)

\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x

24 tháng 3 2020

1) (2x^2 + 1)(x^2 - 2x - 1)

= 2x^4 - 4x^3 - 2x^2 + x^2 - 2x - 1

= 2x^4 - 4x^3 - x^2 - 2x - 1

2) (x^2 - x^4)/(x^2 - 1 + 1)

= (x^2.(1 - x^2))/(x^2 - 1 + 1)

= (x^2.(1 + x)(1 - x))/x^2

= (1 + x)(1 - x)

3) (3x + y)^3 + x^3 - 3x^2 + 3x + 1

Thay x = 1,1; y = -0,7 vào biểu thức, ta có:

= [3.1,1 + (-0,7)]^3 + 1,1^3 - 3.1,1^2 + 3.1,1 + 1

= 19,577

4 tháng 9 2020

a) đk: \(x\ne\left\{0;2\right\}\)

Ta có:

\(M=\frac{x}{x-2}\div\frac{2x}{x^2-2x}\)

\(M=\frac{x}{x-2}\cdot\frac{x\left(x-2\right)}{2x}\)

\(M=\frac{x}{2}\)

b) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\end{cases}}\)

Tại x = 3 thì giá trị của M là: \(M=\frac{3}{2}\)

c) Để \(M\ge0\Leftrightarrow\frac{x}{2}\ge0\Rightarrow x\ge0\)

Vậy khi \(x\ge0\Leftrightarrow M\ge0\)

27 tháng 2 2021

Tính giá trị biểu thức 2x^2-3x+1. Tại x thõa mãn x^2=1/4

3 tháng 9 2018

P= 3x2 - [2x2-3x(x-4)] với x=\(\frac{-3}{2}\)

\(\Rightarrow P=\frac{27}{4}-\left[\frac{9}{2}-\frac{99}{4}\right]=\frac{27}{4}+\frac{81}{4}=\frac{108}{4}=27\)

Q=(x2 + y2) (x2y+y3)-y(x4+y4)với x=\(\frac{-1}{2}\) và y=3

\(\Rightarrow Q=\frac{37}{4}.\frac{111}{4}-\frac{3891}{16}=\frac{4107}{16}-\frac{3891}{16}=\frac{216}{16}=\frac{27}{2}\)

8 tháng 12 2018

\(x^2=x+1\Rightarrow x^2-x-1=0\)

\(A=x^4-2x^3-3x^2+4x+4\)

\(=x^4-x^3-x^2-x^3+x^2+x-3x^2+3x+3+1\)

\(=x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)-3\left(x^2-x-1\right)+1=0-0-0+1=1\)